Смекни!
smekni.com

Статистические методы обработки экспериментальных данных (стр. 2 из 4)

Следовательно, плотность предполагаемого распределения задается формулой

F(x)= [1/(7,33*√2π)]*e[-(x-15,9)2 / 2*(7,33)2)]=0.054*e^(0,009/((x-15,9)^2))

Теперь необходимо вычислить значения f(xi)плотности f (x) при x=xi(в серединах интервалов) Для этого воспользуемся следующей схемой:


значения фунцкии


при u=ui находятся, например, с помощью таблицы, имеющейся в любом учебнике или задачнике по теории вероятностей и математической статистике.

=15,9; s = 7,33
xi ui = xi- x / s φ(ui)
1,54,57,510,513,516,519,522,525,528,531,5

-1,96

-1,56

-1.15

-0,74

-0.33

0.08

0.49

0,90

1.31

1,72

2.13

0,0584

0,1182

0,2059

0,3034

0,3778

0,3977

0,3538

0,2661

0,1691

0,0909

0,0413

0,008

0,016

0,028

0,041

0,052

0,054

0,048

0,036

0,023

0,012

0,006

Далее, на одном чертеже строим гистограмму и график теоретической плотности распределения: гистограмма была построена ранее, а для получения графика плотности наносим точки с координатами (xi ; f(xi)) и соединяем их плавной кривой.

5.Проверка гипотезы о распределении с помощью критерия согласия Пирсона.

Ранее была выдвинута гипотеза о законе распределения рассматриваемой случайной величины. Сопоставление статистического распределения (гистограмма) и предполагаемого теоретического (графика плотности) показывает наличие некоторых расхождений между ними. Поэтому возникает естественный вопрос: чем объясняются эти несовпадения? Ответить на него можно двояко:

1) Указанные расхождения несущественны и вызваны ограниченным количеством наблюдений и случайными факторами – случайностью результата единичного наблюдения, способа группировки данных и т.п. В этом случае выдвинутая гипотеза о распределении считается правдоподобной и принимается как не противоречащая опытным данным.

2) Указанные расхождения являются существенными (неслучайными) и связаны с тем, что действительное распределение случайной величины отличается от предполагаемого. В этом случае выдвинутая гипотеза о распределении отвергается как плохо согласующаяся данными наблюдений.

Для выбора первого или второго варианта ответа и служат так называемые критерии согласия. Словари толкуют слово критерий (от греч. kriterion – средство для суждения) как признак, на основании которого производится оценка, определение и классификация чего-либо.

Существуют различные критерии согласия: К. Пирсона, А.Н. Колмогорова, Н.В. Смирнова, В.И. Романовского и другие. Мы рассмотрим лишь один из них – критерий Пирсона, называемый также критерием c2 («хи - квадрат»). (К. Пирсон (1857 - 1936) – английский математик, биолог, философ – позитивист.)

Критерий Пирсона выгодно отличается от остальных, во – первых, применимостью к любым (дискретным, непрерывным) распределениям и, во – вторых, простотой вычислительного алгоритма.

Правило проверки статистических гипотез с помощью критерия Пирсона будет объяснено на примерах.

Группировка исходных данных.

Применяется критерий Пирсона к сгруппированным данным. Предположим, что произведено n независимых опытов, в каждом из которых изучаемая случайная величина приняла определенное значение. Предположим, что вся числовая ось разбита на несколько непересекающихся промежутков (интервалов и полуинтервалов). Обозначим через nIколичество результатов измерений (значений случайной величины), попавших в i-й промежуток. Очевидно, что ånI = n.

Отметим, что критерий c2 будет давать удовлетворительный для практических приложений результат, если:

1) количество n опытов достаточно велико, по крайней мере n³100;

2) в каждом промежутке окажется не менее 5…10 результатов измерений, т.е. ni³5 при любом i; если количество полученных значений в отдельных промежутках мало (меньше 5), то такие промежутки следует объединить с соседними, суммируя соответствующие частоты.

Пусть концами построенного разбиения являются точки zi , где z1<z2< … <zi – 1 , т.е. само разбиение имеет вид

(- ¥ºz0; z1) , [z1; z2) , [z2; z3) , … , [zi – 1; ziº+¥).

После объединения соответствующих промежутков (последних двух) и замены самой левой границы разбиения на - ¥, а самой правой на + ¥ (поскольку на промежутки должна разбиваться вся числовая ось, а не только диапазон полученных в результате опыта значений), мы приходим к следующим интервальным распределениям, пригодным для непосредственного применения критерия Пирсона:

zi –1; zi - ¥; 6 6;9 9;12 12;15 15;18 18;21
ni 10 9 11 14 18 13
21;24 24;27 27;30 30;+∞
11 7 4 3

Вычисление теоретических частот.

Критерий Пирсона основан на сравнении эмпирических (опытных) частот с теоретическими. Эмпирические частоты nI определяются по фактическим результатам наблюдений. Теоретические частоты, обозначаемые далее

, находятся с помощью равенства

= n×pi,

где n – количество испытаний, а piºR(zi –1<x<zi) - теоретическая вероятность попадания значений случайной величины в i-й промежуток (1 £i£ 1).Теоретические вероятности вычисляются в условиях выдвинутой гипотезы о законе распределения изучаемой случайной величины.


Процедура отыскания теоретических вероятностей и частот показана в расчетной таблице: _

n = 100; а=x= 15,9; σ= s=7,33

i Концы промежутков Аргументы фунцкции Ф0 Значения функции Ф0 Pi= Ф0(ui)- Ф0(ui-1) ν1=npi
zi -1 zi

Ui-1=

(zi-1-x)/s

Ui=

(zi-x)/s

Ф0(ui-1) Ф0(ui)
1

2

3

4

5

6

7

8

9

10

-∞

6

9

12

15

18

21

24 27

30

6

9

12

15

18

21

24

27

30

+∞

-∞-1,35-0,94-0,53-0,120,290,701,111,511,92 -1,35-0,94-0,53-0,120,290,701,111,511,92+∞

-0,5000

-0,4115

-0,3264

-0,2019

-0,0478

0,1141

0,2580

0,3665

0,4345

0,4726

-0,4115

-0,3264

-0,2019

-0,0478

0,1141

0,2580

0,3665

0,4345

0,4726

0,5000

0,0885

0,0851

0,1245

0,1541

0,1619

0,1439

0,1085

0,0680

0,0381

0,0274

8,85

8,51

12,45

15,41

16,19

14,39

10,85

6,80

3,81

2,74

å:1,0000100,00

Статистика c2 и вычисление ее значения по опытным данным.

Для того чтобы принять или отвергнуть гипотезу о законе распределения изучаемой случайной величины, в каждом из критериев согласия рассматривается некоторая (специальным образом подбираемая) величина, характеризующая степень расхождения теоретического (предполагаемого) и статистического распределения.