Смекни!
smekni.com

Статистические методы обработки экспериментальных данных (стр. 1 из 4)

Министерство образования Российской Федерации

Московский государственный университет печати

Факультет полиграфической технологии

Дисциплина: Математика

Курсовая работа по теме:

«Статистические методы обработки

Экспериментальных данных»

Выполнил: студент

Курс 2

Группа ЗТПМ

форма обучения заочная

Номер зачетной книжки Мз 023 н

Вариант № 13

Допущено к защите

Дата защиты

Результат защиты

Подпись преподавателя

Москва – 2010 год


0;3 3;6 6;9 9;12 12;15 15;18 18;21
4 6 9 11 14 18 13
21;24 24;27 27;30 30;33
11 7 4 3

1. Построение интервального и точечного статистических распределений результатов наблюдений. Построение полигона и гистограммы относительных частот.

i – порядковый номер;

Ii – интервал разбиения;

xi – середина интервала Ii;

ni – частота (количество результатов наблюдений, принадлежащих данному интервалу Ii);

wi =

- относительная частота (n =
- объём выборки);

Hi =

- плотность относительной частоты (h – шаг разбиения, т.е. длина интервала Ii).
i Ii xi ni wi Hi

1

2

3

4

5

6

7

8

9

10

11

0;3

3;6

6;9

9;12

12;15

15;18

18;21

21;24

24;27

27;30

30;33

1,5

4,5

7,5

10,5

13,5

16,5

19,5

22,5

25,5

28,5

31,5

4691114181311743

0,04

0,06

0,09

0,11

0,14

0,18

0,13

0,11

0,07

0,04

0,03

0,01

0,02

0,03

0,04

0,05

0,06

0,04

0,04

0,02

0,01

0,01

Объём выборки:

n =

=100,

wi = ni/100;

контроль:

=1

Длина интервала

разбиения (шаг):

h = 3 ,

Hi =

å : 100 1,00

Статистическим распределением называется соответствие между результатами наблюдений (измерений) и их частотами и относительными частотами. Интервальное распределение – это наборы троек (Ii; ni ; wi) для всех номеров i, а точечное – наборы троек (xi ; ni ; wi). Таким образом, в таблице имеются оба – и интервальное, и точечное - статистическое распределения.

Далее, строим полигон и гистограмму относительных частот.

Полигон.

Гистограмма.

Полигон относительных частот – ломаная, отрезки которой последовательно (в порядке возрастания xi) соединяют точки (xi ; wi). Гистограмма относительных частот – фигура, которая строится следующим образом: на каждом интервале Ii, как на основании, строится прямоугольник, площадь которого равна относительной частоте wi; отсюда следует, что высота этого прямоугольника равна Hi = wi/h– плотности относительной частоты. Полигон и гистограмма являются формами графического изображения статистического распределения.

2.Нахождение точечных оценок математического ожидания и

дисперсии.

В качестве точечных оценок числовых характеристик изучаемой случайной величины используются:

- для математического ожидания

=
(выборочная средняя),

- для дисперсии

s2 =

(исправленная выборочная),

где n – объём выборки, ni – частота значения xi.

Таким образом, в статистических расчетах используют приближенные равенства

MX»

, DX»s2 .

Нахождение точечных оценок математического ожидания и дисперсии по данным варианта осуществим с помощью расчетной таблицы.

i xi ni xi ni (xi -
)2 ni

1

2

3

4

5

6

7

8

9

10

11

1,5

4.5

7,5

10,5

13,5

16,5

19,5

22,5

25,5

28,5

31,5

4691114181311743

6

27

67,5

115,5

189

297

253,5

247,5

178,5

114

94,5

829,44

779,76

635,04

320,76

80,64

6,48

168,48

479,16

645,12

635,04

744,12

=
=

хini/100 = 1590/100= 15,9

s2 =

=

= 5324,04/99=53,78

å : 100 1590 5324,04

3.Выдвижение гипотезы о распределении случайной величины.

При выдвижении гипотезы (предположения) о законе распределения изучаемой случайной величины мы опираемся лишь на внешний вид статистического распределения. Т.е. будем руководствоваться тем, что профиль графика плотности теоретического распределения должен соответствовать профилю гистограммы: если середины верхних сторон прямоугольников, образующих гистограмму, соединить плавной кривой, то эта линия представляет в первом приближении график плотности распределения вероятностей.

Итак, изобразим график и выпишем формулу плотности нормального (или гауссовского) распределения с параметрами а и

, - ¥< а <+¥,

Сравнение построенной гистограммы и графика плотности распределения приводит к следующему заключению о предполагаемом (теоретическом) законе распределения в рассматриваемом варианте исходных данных:

Вариант 13 – нормальное (или гауссовское распределение)

4.Построение графика теоретической плотности распределения.

Чтобы выписать плотность теоретического (предполагаемого) распределения, нужно определить значения параметров

и а и подставить их в соответствующую формулу. Все параметры тесно связаны с числовыми характеристиками случайной величины, т.е.

MX = а,

DX = σ2

Поскольку значения математического ожидания и дисперсии неизвестны, то их заменяют соответствующими точечными оценками, т.е. используют (уже упомянутые ранее) приближенные равенства MX»

, DX»s2 , что позволяет найти значения параметров распределения.

По исходным данным была выдвинута гипотеза о нормальном распределении изучаемой случайной величины. Найдем параметры этого распределения:

_

x = а, 15,9 = а, а=15,9

s2= σ2 53,78 = σ2 σ=7,33