Смекни!
smekni.com

Законы распределения случайных величин и их применение (стр. 3 из 3)

3°.

=- т.е. интеграл вероятностей является нечетной функцией.

График функции изображен на рис. 4.

Таким образом, если случайная величина

нормально распределена с параметрами a и
, то вероятность того, что случайная величина удовлетворяет неравенствам
, определяется соотношением (7).

Пусть

. Найдем вероятность того, что нормально распределенная случайная величина
отклонится от параметра a по абсолютной величине не более, чем на
, т.е.
.

Так как неравенство

равносильно неравенствам
то полагая в соотношении (7)
,
получим

Вследствие того, что интеграл вероятностей - нечетная функция, имеем

(8)

Пример 1. Пусть случайная величина

подчиняется нормальному закону распределения вероятностей с параметрами a=0,
=2.

Определить:

1)

;

2)

;

Решение:

1) Используя формулу (7), имеем

Из табл. II находим, что Ф(1)=0,34134, Ф(1,5)=0,43319. Следовательно

3

2) Так как a=0, то

. По формуле (8) находим

Пример 2. В каких пределах должна изменяться случайная величина, подчиняющаяся нормальному закону распределения, чтобы

)=0,9973

Решение: По формуле (8) имеем

Следовательно, . Из табл. II находим, что этому значению

соответствует =3,откуда
.

Из последнего примера следует, что если случайная величина подчиняется нормальному закону распределения, то можно утверждать с вероятностью, равной 0,9973, что случайная величина находится в интервале

. Так как данная вероятность близка к единице, то можно считать, что значения нормально распределенной случайной величины практически не выходят за границы интервала
Этот факт называют правилом трех сигм.

6.Условные законы распределения

Как было показано выше, зная совместный закон распределения можно легко найти законы распределения каждой случайной величины, входящей в систему.

Однако, на практике чаще стоит обратная задача – по известным законам распределения случайных величин найти их совместный закон распределения.

В общем случае эта задача является неразрешимой, т.к. закон распределения случайной величины ничего не говорит о связи этой величины с другими случайными величинами.

Кроме того, если случайные величины зависимы между собой, то закон распределения не может быть выражен через законы распределения составляющих, т.к. должен устанавливать связь между составляющими.

Все это приводит к необходимости рассмотрения условных законов распределения.

Распределение одной случайной величины, входящей в систему, найденное при условии, что другая случайная величина приняла определенное значение, называется условным законом распределения.

Условный закон распределения можно задавать как функцией распределения так и плотностью распределения.

Условная плотность распределения вычисляется по формулам:

Условная плотность распределения обладает всеми свойствами плотности распределения одной случайной величины.

Приложение 1

Таблица I: Значения функции:

X

X

X

X

0.00 0.3989 1.00 0.2420 2.00 0.0540 3.00 0.0044
0.05 0.3984 1,05 0.2299 2,05 0.0488 3,05 0.0038
0.10 0.3970 1,10 0.2179 2,10 0.0440 3,1 0.0033
0.15 0.3945 1,15 0.2059 2,15 0.0396 3,15 0.0028
0.20 0.3910 1,20 0.1942 2,20 0.0355 3,2 0.0024
0.25 0.3867 1,25 0.1826 2,25 0.0317 3,25 0.0020
0.30 0.3814 1,30 0.1714 2,30 0.0283 3,3 0.0017
0.35 0.3752 1,35 0.1604 2,35 0.0252 3,35 0.0015
0.40 0.3683 1,40 0.1497 2,40 0.0224 3,4 0.0012
0.45 0.3605 1,45 0.1394 2,45 0.0198 3,45 0.0010
0.50 0.3521 1,50 0.1295 2,50 0.0175 3,5 0.0009
0.55 0.3429 1,55 0.1200 2,55 0.0154 3,55 0.0007
0.60 0.3332 1,60 0.1109 2,60 0.0136 3,6 0.0006
0.65 0.3230 1,65 0.1023 2,65 0.0119 3,65 0.0005
0.70 0.3123 1,70 0.0940 2,70 0.0104 3,7 0.0004
0.75 0.3011 1,75 0.0863 2,75 0.0091 3,75 0.0003
0.80 0.2897 1,80 0.0790 2,80 0.0079 3,8 0.0002
0.85 0.2780 1,85 0.0721 2,85 0.0069 3,85 0.0002
0.90 0.2661 1,90 0.0656 2,90 0.0060 3,9 0.0002
0.95 0.2541 1,95 0.0596 2,95 0.0051 3,95 0.0002
4.00 0.0001

Приложение 2

Таблица II: Значения функции

х Ф(х) х Ф(х) х Ф(х) х Ф(х)
0.00 0.00000 0.85 0.30234 1,70 0.45543 2,55 0.49461
0.05 0.01994 0.90 0.31594 1,75 0.45994 2,60 0.49534
0.10 0.03983 0.95 0.32894 1,80 0.46407 2,65 0.49598
0.15 0.05962 1.00 0.34134 1,85 0.46784 2,70 0.49653
0.20 0.07926 1,05 0.35314 1,90 0.47128 2,75 0.49702
0.25 0.09871 1,10 0.36433 1,95 0.47441 2,80 0.49744
0.30 0.11791 1,15 0.37493 2,00 0.47725 2,85 0.49781
0.35 0.13683 1,20 0.38493 2,05 0.47982 2,90 0.49813
0.40 0.15542 1,25 0.39435 2,10 0.48214 2,95 0.49841
0.45 0.17364 1,30 0.40320 2,15 0.48422 3.00 0.49865
0.50 0.19146 1,35 0.41149 2,20 0.48610 3,05 0.49931
0.55 0.20884 1,40 0.41924 2,25 0.48778 3,10 0.49966
0.60 0.22575 1,45 0.42647 2,30 0.48928 3,15 0.499841
0.65 0.24215 1,50 0.43319 2,35 0.49061 3,20 0.499928
0.70 0.25804 1,55 0.43943 2,40 0.49180 3,25 0.499968
0.75 0.27337 1,60 0.44520 2,45 0.49286 3,40 0.499997
0.80 0.28814 1,65 0.45053 2,50 0.49379 3,45 0.5