Смекни!
smekni.com

Законы распределения случайных величин и их применение (стр. 1 из 3)

Введение

Теория вероятностей является одним из классических разделов математики. Она имеет длительную историю. Основы этого раздела науки были заложены великими математиками. Назову, например, Ферма, Бернулли, Паскаля. Позднее развитие теории вероятностей определились в работах многих ученых. Большой вклад в теорию вероятностей внесли ученые нашей страны: П.Л.Чебышев, А.М.Ляпунов, А.А.Марков, А.Н.Колмогоров. Вероятностные и статистические методы в настоящее время глубоко проникли в приложения. Они используются в физике, технике, экономке, биологии и медицине. Особенно возросла их роль в связи с развитием вычислительной техники.

Например, для изучения физических явлений производят наблюдения или опыты. Их результаты обычно регистрируют в виде значений некоторых наблюдаемых величин. При повторении опытов мы обнаруживаем разброс их результатов. Например, повторяя измерения одной и той же величины одним и тем же прибором при сохранении определенных условий (температура, влажность и т.п.), мы получаем результаты, которые хоть немного, но все же отличаются друг от друга. Даже многократные измерения не дают возможности точно предсказать результат следующего измерения. В этом смысле говорят, что результат измерения есть величина случайная. Еще более наглядным примером случайной величины может служить номер выигрышного билета в лотерее. Можно привести много других примеров случайных величин. Все же и в мире случайностей обнаруживаются определенные закономерности. Математический аппарат для изучения таких закономерностей и дает теория вероятностей. Таким образом, теория вероятностей занимается математическим анализом случайных событий и связанных с ними случайных величин.

1. Случайные величины

Понятие случайной величины является основным в теории вероятностей и ее приложениях. Случайными величинами, например, являются число выпавших очков при однократном бросании игральной кости, число распавшихся атомов радия за данный промежуток времени, число вызовов на телефонной станции за некоторый промежуток времени, отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе и т. д.

Таким образом, случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.

Случайные величины можно разделить на две категории.

Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).

Это множество может быть как конечным, так и бесконечным.

Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.

Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.

Очевидно, что число возможных значений непрерывной случайной величины бесконечно.

Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.

2. Равномерное распределение

Пусть сегмент оси Ox есть шкала некоторого прибора. Допустим, что вероятность попадания указателя в некоторый отрезок шкалы пропорциональна длине этого отрезка и не зависит от места отрезка на шкале. Отметка указателя прибора есть случайная величина

могущая принять любое значение из сегмента
. Поэтому

Если, далее,

и
(
<
) - две любые отметки на шкале, то согласно условию имеем

Где

- коэффициент пропорциональности, не зависящий от
и
, а разность
, - длина сегмента
. Так как при
=a и
=b имеем
, то
, откуда
.

Таким образом

(1)

Теперь легко найти функцию F(x) распределения вероятностей случайной величины

. Если
, то

так как

не принимает значений, меньших a. Пусть теперь
. По аксиоме сложения вероятностей
. Согласно формуле (1), в которой принимаем
,
имеем

Так как

, то при
получаем

Наконец, если

, то
, так как значения
лежит на сегменте
и, следовательно, не превосходят b. Итак, приходим к следующей функции распределения:

График функции

представлен на рис. 1.

Плотность распределения вероятностей найдем по формуле. Если

или
, то
. Если
, то

Таким образом,

(2)

График функции

изображен на рис. 2. Заметим, что в точках a и b функция
терпит разрыв.

Величина, плотность распределения которой задана формулой (2), называется равномерно распределенной случайной величиной.

3. Биномиальное распределение

Биномиальное распределение в теории вероятностей — распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких что вероятность «успеха» в каждом из них равна p.

Пусть

— конечная последовательность независимых случайных величин с распределением Бернулли, то есть

Построим случайную величину Y:

.
.

Тогда Y, число единиц (успехов) в последовательности

, имеет биномиальное распределение с n степенями свободы и вероятностью «успеха» p. Пишем:
. Её функция плотности вероятности задаётся формулой:

где

— биномиальный коэффициент.

Функция распределения биномиального распределения может быть записана в виде суммы: