, (65.1)
где - функция, обратная функции .
Вывод формулы (65.1) основан на соотношениях (64.4) и (64.6). Поскольку функция - взаимно однозначная, то эта функция или монотонно возрастающая или монотонно убывающая . Очевидны соотношения:
, (65.2)
. (65.3)
Пусть , - функции распределения вероятностей случайных величин и . Если , тогда используя (65.2),
. (65.4)
Продифференцируем по равенство (65.4), тогда
. (65.5)
Аналогично при справедливо равенство (65.3), поэтому
(65.6)
Отсюда:
. (65.7)
Теперь из соотношений (65.5) и (65.7) следует (65.1).
Существенным условием при выводе формулы (65.1) является свойство взаимной однозначности функции . Примерами таких функций являются: 1). Линейная функция , где , - числа, при этом обратная функция имеет вид ; 2). Экспонента - , откуда обратная функция , , и другие. Однако условие взаимной однозначности функции может нарушаться, например, для функции обратная функция , - двузначная. При этом рассматриваются две функции и , , которые называются первая и вторая ветви обратного преобразования . Более сложный пример: . Здесь обратная функция – многозначная.
65.2. Рассмотрим модификацию формулы (65.1) на случай многозначного обратного преобразования . Для этого на области определения функции выделим неперекрывающиеся интервалы , - целое, на которых , тогда на интервалах вида выполняется условие . Функция , для , монотонная возрастающая, а для - монотонная убывающая. Поэтому для каждого из указанных интервалов существует однозначная обратная функция по отношению к функции . Пусть функция для имеет обратную функцию вида , , очевидно - монотонная возрастающая, поскольку обратная ей - монотонная возрастающая. Аналогично обозначим через - функцию со значениями , обратную к на интервале . Очевидно - монотонная убывающая. Функция называется -я ветвь обратного преобразования функции . Теперь по формуле сложения вероятностей для несовместных событий:
(65.8)
где суммирование ведется по всем ветвям обратного преобразования.
На рис. 65.1. представлен простой пример функции , у которой ветви обратного преобразования: со значениями , и - со значениями . На интервале функция - монотонно возрастающая, а на интервале функция - монотонная убывающая. Равенство (65.8) в этом случае принимает вид:
.
Рис. 65.1. Пример преобразования случайной величины.
Представим вероятности в (65.8) через плотности вероятностей, тогда:
. (65.9)
Дифференцируя по обе части (65.9), получим
(65.10)
или
, (65.11)
где суммирование по ведется по всем ветвям обратного преобразования.
65.3. Рассмотрим примеры вычисления плотности вероятности случайной величины по формуле (65.11). Пусть - линейное преобразование случайной величины . Функция - взаимно однозначная, поэтому обратное преобразование имеет одну ветвь и сумма в (65.11) содержит одно слагаемое. Поскольку , то (65.11) принимает вид: