. (65.12)
Рассмотрим квадратичное преобразование . Обратное преобразование имеет две ветви и . Поэтому сумма (65.11) состоит из двух слагаемых. Вычисляя, для , получаем:
(65.13)
Пусть и случайная величина имеет равномерное распределение вероятностей на интервале , с плотностью , если , и при . Обратное преобразование имеет две ветви: , а также . Вычисление производных и подстановка в (65.11) приводит к результату:
. (65.14)
На рис. 65.2. представлен график плотности косинус-преобразования
равномерно распределенной случайной величины. Таким образом, исходная
Рис. 65.2. Плотность вероятности косинус-преобразования.
исходная величина и преобразованная величина могут иметь совершенно непохожие плотности вероятности.
66.1. Соотношение (65.11), определяющее плотность вероятности преобразованной величины через плотность исходной случайной величины , можно обобщить на случай преобразования случайных величин. Пусть случайные величины имеют совместную плотность , и заданы функций , переменных . Необходимо найти совместную плотность вероятности случайных величин:
(66.1)
Эта задача отличается от общей постановки, п. 6.4., условием - число исходных случайных величин равно числу преобразованных величин. Преобразование, обратное (66.1), находится как решение системы уравнений , , относительно переменных . При этом каждое зависит от . Совокупность таких функций , , образует обратное преобразование. В общем случае обратное преобразование неоднозначно. Пусть , , - - я ветвь обратного преобразования , тогда справедливо соотношение:
, (66.2)
где сумма берется по всем ветвям обратного преобразования,
(66.3)
- якобиан преобразования от случайных величин к случайным величинам .
Если из каждой совокупности случайных величин получается случайных величин , то формулой (66.2) можно воспользоваться, дополнив систему до случайных величин, например, такими величинами . Если же , то случайных величин из совокупности функционально связаны с остальными величинами, поэтому - мерная плотность будет содержать дельта-функций.
Соотношения (64.4), (64.6) и (66.2) определяют два метода решения задачи вычисления плотности совокупности случайных величин , полученных функциональным преобразованием исходных случайных величин с совместной плотностью вероятности . Основная трудность в применении первого метода состоит в вычислении -мерного интеграла по сложной области . Во втором методе основная трудность – это нахождение всех ветвей обратного преобразования.
66.2. Рассмотрим простой пример вычисления плотности вероятности суммы двух случайных величин и с плотностью по формуле (66.2). Очевидно, в качестве первой преобразованной величины следует выбрать сумму: , а в качестве второй (хотя можно взять и ). Таким образом, функциональное преобразование от , к , задается системой уравнений: