Подставим (52.2) в (52.3), тогда
. (52.4)
Представим вероятности в (52.4) через плотности вероятностей, тогда
(52.5)
Это соотношение определяет условную функцию через плотности и . Отметим, что для независимых случайных величин и совместная плотность . При этом, как следует из (52.5), условная функция - не зависит от аргумента (т.е. не зависит от событий вида .
Аналогично (52.3) можно определить функцию случайной величины при условии, что , и затем получить выражение аналогичное (52.5)
. (52.6)
Условной плотностью распределения вероятностей случайной величины при условии называется функция:
. (53.1)
Соотношение (52.5) подставим в (53.1), тогда
. (53.2)
Отсюда следует
. (53.3)
- формула умножения для плотностей. Эта формула аналогична формуле умножения вероятностей. Очевидно,
. (53.4)
Данное равенство является аналогом формулы полной вероятности.
Аналогично (53.1) вводится условная плотность распределения вероятности случайной величины при условии как функция вида:
. (53.5)
Отсюда и из (52.6) следуют соотношения:
, (53.6)
. (53.7)
В (53.6) подставим (53.3) и (53.4), тогда:
. (53.8)
Это соотношение аналогично формуле Байеса. Здесь случайные величины и можно поменять местами, тогда получим также верное соотношение для условной плотности , которая определяется через функции и .
54.1. Пусть случайные величины и имеют совместную плотность вероятности и - функция двух переменных. Тогда - случайная величина, полученная подстановкой случайных величин и вместо аргументов и .
Математическим ожиданием случайной величины называется число
. (54.1)
Если , , тогда из (54.1) следует
, , . (54.2)
Числа называются начальными смешанными моментами порядка случайных величин и . Эти числа применяются в качестве статистических характеристик двумерного случайного вектора. Рассмотрим частные случаи (54.2). 1). , тогда - начальный момент порядка случайной величины . При дополнительном условии получаем - математическое ожидание случайной величины , при - - среднее ее квадрата и т.д. Таким образом, при смешанные моменты (54.2) совпадают с начальными моментами случайной величины . 2). Если положить , тогда - смешанные моменты совпадают с начальными моментами случайной величины . В обоих случаях получаем индивидуальные характеристики одной из случайных величин. 3). Для получения групповой характеристики (54.2), отражающей свойства совокупности двух случайных величин, необходимо рассмотреть ненулевые . Наиболее простой вариант: , . При этом из (54.2) следует
. (54.3)
Число называется корреляцией случайных величин и и представляет собой важнейшую характеристику совокупности двух случайных величин.
Если и - независимы, то и (54.3) преобразуются следующим образом: