Рис. 57.2. Линии равного уровня плотности
вероятности при
.Отметим, что если
, а линии равного уровня имеют ось симметрии, например, на рис. 57.1 линии – это эллипсы, тогда можно выполнить преобразование (вращение) системы координат , такое, что в новой системе ковариация . Это означает также и преобразование случайных величин , с ненулевой ковариацией к новым случайным величинам, для которых ковариация равна нулю.58.1. Коэффициентом корреляции двух случайных величин и называется число
. (58.1)
Коэффициент корреляции является ковариацией: двух безразмерных случайных величин
, , (58.2)
полученных из исходных величин и путем преобразования специального вида (58.2) (нормировки), которое обеспечивает нулевые средние , и единичные дисперсии , .
Коэффициент корреляции (58.1) можно представить через ковариацию случайных величин и :
. (58.3)
Поскольку , то из (58.3) следует
. (58.4)
Коэффициент корреляции является безразмерной величиной, принимает значения на интервале и поэтому используется как мера статистической связи линейного типа между случайными величинами и , в отличие от ковариации , для которой интервал значений зависит от дисперсий случайных величин. Рассмотрим примеры вычисления коэффициента корреляции, позволяющие выяснить свойства как меры статистической связи между случайными величинами.
58.2. Пусть - случайная величина с математическим ожиданием , дисперсией и . Ковариация случайных величин и определяется формулой (56.5): . Подставим это соотношение в (58.3) , тогда:
(58.4)
Таким образом, для случайных величин , , связанных линейной зависимостью коэффициент корреляции принимает либо максимальное значение , либо минимальное - .
58.3. Рассмотрим обобщение линейной функции, связывающей случайные величины и на линейную случайную функцию следующего вида:
(58.5)
где и - независимые случайные величины. В частном случае - число и (58.5) – линейная функция, определяющая через . Для детерминированной линейной связи - принимает максимальное значение. Если - случайная величина, то связь (58.5) становится статистической (стохастической, случайной), то есть не столь жесткой как детерминированная функциональная связь. Это приводит к . В зависимости от свойств случайной величины статистическая связь между и может быть сильной, , или слабой, . Для того, чтобы ответить на вопрос, какова мера связи между случайными величинами и (58.5) вычислим их коэффициент корреляции.
Пусть , , , . Тогда из (58.5) следует, в силу независимости и :
.
Выразим дисперсию случайные величины через параметры случайных величин , :
. (58.6)
Теперь по формуле (58.3):
. (58.7)
Если , то из (58.7) следует , что соответствует слабой связи между случайными величинами и . Если , из (58.7) следует , связь становится сильной и в пределе при переходит в детерминированную линейную связь.