3. Построить уравнение множественной регрессии в естественной форме, пояснить экономический смысл параметров уравнения.
4. Найти среднюю ошибку аппроксимации.
5. Рассчитать прогнозное значение результата, если прогнозное значение факторов составит: х1 = 35 лет, х2 = 10 лет, х3= 20 штук в смену.
Решение.
Для оценки мультиколлинеарности факторов используем определитель матрицы парных коэффициентов корреляции между факторами.
Определим парные коэффициенты корреляции.
Для этого рассчитаем таблицу 7.
Используя рассчитанную таблицу, определяем дисперсию y, x1, x2, x3.
Найдем среднее квадратическое отклонение признаков y, x1, x2, x3, как корень квадратный из соответствующей дисперсии.
Определим парные коэффициенты корреляции:
таблица 7
№ | y | y2 | x1 | x12 | x2 | x22 | x3 | x32 | yx1 | yx2 | yx3 | x1x2 | x1x3 | x2x3 | Аi | ||
1 | 3,2 | 10,24 | 30 | 900 | 6 | 36 | 12 | 144 | 96,0 | 19,2 | 38,4 | 180 | 360 | 72 | 2,87 | 0,33 | 10,18 |
2 | 4,5 | 20,25 | 41 | 1681 | 18 | 324 | 20 | 400 | 184,5 | 81,0 | 90,0 | 738 | 820 | 360 | 4,00 | 0,50 | 11,03 |
3 | 3,3 | 10,89 | 37 | 1369 | 11 | 121 | 12 | 144 | 122,1 | 36,3 | 39,6 | 407 | 444 | 132 | 3,32 | -0,02 | 0,73 |
4 | 3,0 | 9,00 | 33 | 1089 | 9 | 81 | 18 | 324 | 99,0 | 27,0 | 54,0 | 297 | 594 | 162 | 3,38 | -0,38 | 12,79 |
5 | 2,8 | 7,84 | 24 | 576 | 4 | 16 | 15 | 225 | 67,2 | 11,2 | 42,0 | 96 | 360 | 60 | 2,65 | 0,15 | 5,47 |
6 | 3,9 | 15,21 | 44 | 1936 | 19 | 361 | 17 | 289 | 171,6 | 74,1 | 66,3 | 836 | 748 | 323 | 4,04 | -0,14 | 3,54 |
7 | 3,7 | 13,69 | 37 | 1369 | 18 | 324 | 17 | 289 | 136,9 | 66,6 | 62,9 | 666 | 629 | 306 | 3,59 | 0,11 | 3,03 |
8 | 4,2 | 17,64 | 39 | 1521 | 22 | 484 | 26 | 676 | 163,8 | 92,4 | 109,2 | 858 | 1014 | 572 | 4,19 | 0,01 | 0,20 |
9 | 4,7 | 22,09 | 49 | 2401 | 30 | 900 | 26 | 676 | 230,3 | 141,0 | 122,2 | 1470 | 1274 | 780 | 4,83 | -0,13 | 2,86 |
10 | 4,4 | 19,36 | 48 | 2304 | 24 | 576 | 22 | 484 | 211,2 | 105,6 | 96,8 | 1152 | 1056 | 528 | 4,56 | -0,16 | 3,61 |
11 | 2,9 | 8,41 | 29 | 841 | 8 | 64 | 18 | 324 | 84,1 | 23,2 | 52,2 | 232 | 522 | 144 | 3,13 | -0,23 | 7,82 |
12 | 3,7 | 13,69 | 31 | 961 | 6 | 36 | 20 | 400 | 114,7 | 22,2 | 74,0 | 186 | 620 | 120 | 3,36 | 0,34 | 9,17 |
13 | 2,4 | 5,76 | 26 | 676 | 5 | 25 | 10 | 100 | 62,4 | 12,0 | 24,0 | 130 | 260 | 50 | 2,51 | -0,11 | 4,65 |
14 | 4,5 | 20,25 | 47 | 2209 | 19 | 361 | 20 | 400 | 211,5 | 85,5 | 90,0 | 893 | 940 | 380 | 4,39 | 0,11 | 2,46 |
15 | 2,6 | 6,76 | 29 | 841 | 4 | 16 | 15 | 225 | 75,4 | 10,4 | 39,0 | 116 | 435 | 60 | 2,97 | -0,37 | 14,17 |
σ | 53,8 | 201,08 | 544 | 20674 | 203 | 3725 | 268 | 5100 | 2030,7 | 807,7 | 1000,6 | 8257 | 10076 | 4049 | 53,80 | 0,00 | 91,69 |
ср. | 3,59 | 13,41 | 36,27 | 1378,27 | 13,53 | 248,33 | 17,87 | 340,00 | 135,38 | 53,85 | 66,71 | 550,47 | 671,73 | 269,93 | 3,59 | 0,00 | 6,11 |
Матрица парных коэффициентов корреляции:
y | x1 | x2 | x3 | |
y | 1,000 | |||
x1 | 0,908 | 1,000 | ||
x2 | 0,894 | 0,931 | 1,000 | |
x3 | 0,783 | 0,657 | 0,765 | 1,000 |
Анализируем матрицу парных коэффициентов корреляции.
- rx1x2=0.931, т. е. между факторами x1 и x2 существует сильная корреляционная связь, один из этих факторов необходимо исключить.
- rx1x3=0.657 меньше, чем rx2x3=0.765, т.е. корреляция фактора х2 с фактором х3 сильнее, чем корреляция факторов х1 и х3.
- Из модели следует исключить фактор х2, т.к. он имеет наибольшую тесноту связи с х3 и, к тому же, менее тесно (по сравнению с x1) связан с результатом у (0.894<0.908).
2.1. Уравнение регрессии в естественной форме будет иметь вид:
yx = a + blx]+b3x3,
фактор х2 исключен из модели.
Стандартизованное уравнение:
ty = β1tx1+β3tx3
где:
ty , tx1, tx3 – стандартизованные переменные.
Параметры уравнения β1 и β3 определим методом наименьших квадратов из системы уравнений:
Или:
Систему решаем методом Крамера:
∆= | 1 | 0,657 | = 1-0,6572= 0,568 |
0,657 | 1 |
∆β1= | 0,908 | 0,657 | = 0,908-0,6570,783=0,394 |
0,783 | 1 |
∆β3= | 1 | 0,571 | =0,833-0,5710,413= 0,186 |
0,413 | 0,833 |
Тогда:
Получили уравнение множественной регрессии в стандартизованном масштабе:
ty = 0,693tx1+0,327tx3
Коэффициенты β1 и β3 сравнимы между собой в отличии от коэффициентов чистой регрессии b1 и b3.
β1=0,693 больше β3=0,327, следовательно, фактор x1 сильнее влияет на результат y чем фактор x3.
Определим индекс множественной корреляции:
Cвязь между y и факторами x1, x3 характеризуется как тесная, т. к. значение индекса множественной корреляции близко к 1.
Коэффициент множественной детерминации:
R 2yx1x3=(0.941)2=0.886
Т. е. данная модель объясняет 88,6% вариации y, на долю неучтенных в модели факторов приходится 100-88,6=11,4%
Оценим значимость полученного уравнения регрессии с помощью F-критерия Фишера:
Fтабл(α=0,05; k1=2; k2=15-2-1=12)=3,88
Табличное значение критерия Фишера (определяем по таблице значений критерия Фишера при заданном уровне значимости α и числе степеней свободы k1 и k2) меньше фактического значения критерия. следовательно, гипотезу H0 о том, что полученное уравнение статистически незначимо и ненадежно, отвергаем и принимаем альтернативную гипотезу H1: полученное уравнение статистически значимо, надежно и пригодно для анализа и прогноза.