Оценим статистическую значимость включения в модель факторов x1 и x2.
Fтабл (α=0,05; k1=1; k2=15-2-1=12)=4,75
Fx1 >Fтабл.
Fx3 >Fтабл.
Значит, включение в модель факторов x1 и x3 статистически значимо.
Перейдем к уравнению регрессии в естественном масштабе:
Уравнение множественной регрессии в естественном масштабе:
Экономическая интерпретация параметров уравнения:
b1=0.064, это значит, что с увеличением x1 – возраста рабочего на 1 год заработная плата рабочего увеличивается в среднем на 64 рубля, если при этом фактор x2 - выработка рабочего не меняется и фиксирован на среднем уровне.
b3=0,053, это значит, что с увеличением x3 – выработки рабочего на 1 шт. в смену, заработная плата рабочего увеличивается в среднем на 53 рубля, если при этом фактор x1 - возраст рабочего не меняется и фиксирован на среднем уровне.
a=0,313 не имеет экономической интерпретации, формально это значение результата y при нулевом значении факторов, но факторы могут и не иметь нулевого значения.
Найдем величину средней ошибки аппроксимации, таблица 7.
Ошибка аппроксимации Аi, i=1…15:
Средняя ошибка аппроксимации:
Ошибка небольшая, качество модели высокое.
Используем полученную модель для прогноза.
Если х1 =35, х2=10, х3 =20, то
ур = 0,313 + 0,064•35 + 0,053•20 = 3,618 тыс. руб.
т. е. для рабочего данного цеха, возраст которого 35 лет, а выработка 20 шт. в смену, прогнозное значение заработной платы - 3618 руб.