Смекни!
smekni.com

Связь математики с музыкой (стр. 2 из 3)

Далее Кеплер пишет о том, что Сатурн и Юпитер "поют" басом, а Марс - тенором, Земля и Венера - альтом, а Меркурий - дискантом. Никаких доказательств он не приводит. Выполняя многочисленные расчеты, ученый устал в поисках всеобщей гармонии. "Мой мозг устает, когда я пытаюсь понять, что я написал, и мне уже трудно восстановить связь между рисунками и текстом, которую я сам когда-то нашел", - писал знаменитый астроном и математик. Наступало новое время в естествознании: на смену поискам И.Кеплера шли открытия Ньютона.

4. XVIII век открыл новые страницы в истории музыки. Около 1700 года немецкий органист А. Веркмайстер осуществил гениальное решение: отказался от совершенных и несовершенных консонансов пифагорейской гаммы. Сохранив октаву, он разделил ее на 12 равных частей. Пифагорова комма исчезла. Новый музыкальный строй позволил выполнять транспонирование мелодии. С введением этого строя в музыке восторжествовала темперация (от лат. соразмерность). В чем же состояло математическое описание равномерно-темперированного строя?

Вначале было дано физическое определение звука. Музыкальный тон, как уже говорилось, есть колебательный процесс с некоторой фиксированной частотой. Известно, что человеческое ухо способно воспринимать колебания частоты от 16 до 20000 Гц.

В основе устройства музыкальной гаммы лежат определенные закономерности. Для построения гаммы гораздо удобнее пользоваться, оказывается, логарифмами соответствующих частот: log 2w0, log 2w1... log 2wm. Октава (w0,2w0) при этом перейдет в промежуток от log 2w0 до log 2w0 = log 2w0+1, т.е. в промежуток длиной 1. Геометрическая прогрессия w0, w1,.., wm будет соответствовать арифметической log 2w0, log 2w1,…, log 2wm.

Таким образом, на оси логарифмов шкала будет состоять из точек А, А+1/m; А+2/m;...; А+1, где А – величина. На сколько же частей должна быть разделена музыкальная шкала, чему равно m? Анализ многих традиционных примеров народной музыки показал, что чаще всего в ней встречаются интервалы, выражаемые с помощью отношений частот: 2 (октава), 3/2 (квинта), 5/4 (терция), 4/3 (кварта), 5/3 (секста), 9/8 (секунда), 15/8 (септима). Эти и другие выводы показали, что музыкальная шкала должна быть разделена на 12 частей. Отношение соседних частот равномерно-темперированного строя постоянно и равно.

Покажем это графически:

секунда (9/8) 1,125
терция (5/4) 1,25
кварта (4/3) 1,333
квинта (3/2) 1,5
секста (5/3) 1,667
септима(15/8) 1,875
октава (2) 2

Органы, настроенные А. Веркмайстером, зазвучали в равномерно – темперированном строе. Преимущества нового строя были бесспорными. Строй носил замкнутый характер и состоял из интервалов, вполне приемлемых для музыкального слуха как в мелодическом, так и в гармоническом отношении. В нем совершенно спокойно можно было осуществлять переходы из тональности в тональность. И.С.Бах доказал жизнеспособность новой музыкальной системы, написав "Хорошо темперированный клавир", состоящий из 12 мажорных и 12 минорных произведений. Авторитет великого композитора примирил споры математиков и музыкантов, выступавших "за" или "против" нового музыкального строя.

Известно открытие Пифагора в области теории музыки. Необычность его в том, что сочетание звуков, издаваемых струнами, наиболее благозвучно, если длины струн музыкального инструмента находятся в правильном численном отношении друг к другу.

Прежде чем перейти к этому описанию, надо вспомнить, что такое звук. Согласно акустике, звук распространяется в воздухе волнообразно. Это значит, что с того момента, как зазвучали музыкальные инструменты, от них по всему залу расходятся звуковые волны. Колебания, передаваемые через воздух, заставляют вибрировать наши барабанные перепонки, в результате чего мы и улавливаем звук. Долгое время не было единого мнения о том, что определяет приятное для слуха звучание струны (в музыке это явление называют консонансом). Одни считали, что это зависит от натяжения струны, другие видели ответ в том, что длина струны - причина того или иного звучания, третьи определяли консонанс с помощью высоты тона. Ясность в этом вопросе наступила после Архита (IV в. до н.э.), который сущность высоты тона видел не в длине струны и не в силе натяжения, а в скорости ее движения, т.е. скорости ударения струны по частичкам воздуха.

Это значит, что длины струн l1, l2 и l4 связаны между собой средним арифметическим.

Итак, квинта является средним арифметическим частот основного тона w1 и октавы w2, а кварта - средним гармоническим w1 и w2. Или иначе: квинта есть среднее гармоническое длин струн основного тона l1 и октавы l2, а кварта - среднее арифметическое l1 и l2. Это лишь незначительная часть тех прекрасных пропорций, которые были воплощены в пифагорейской музыкальной гамме. Гармонию звуков пифагорейцы считали лишь проявлением более глубокой гармонии - красоты окружающего мира. Пифагорейцы известны в истории эстетики благодаря еще одной теории. Она также была связана с музыкой, но имела иной характер. Если первая теория, как мы убедились, была построена на математических пропорциях, то вторая теория провозглашала музыку силой, способной воздействовать на душу. Хорошая музыка может улучшить душу, а плохая - испортить ее. Такое музыкальное действие греки называли психагогией, или управлением душами.

У древних греков существовал и другой способ построения музыкальной гаммы, кроме описанного выше. Он был более простым и удобным и до сих пор применяется при настройке музыкальных инструментов.

Оказывается, гамму можно построить, пользуясь лишь совершенными консонансами - квинтой и октавой. Суть этого метода состоит в том, что от исходящего звука, например "до" (3/2)О = 1, мы движемся по квартам вверх и вниз и полученные звуки собираем в одну октаву. И тогда получаем: (3/2)1= 3/2 - соль, (3/2)2:2 = 9/8 - ре, (3/2)3:2 =27/16 - ля, (3/2)4:22 = 81/64 - ми, (3/2)5: 22 = 243/128 - си, (3/2)-1:2 =4/3 - фа.

Располагая эти звуки по порядку, получаем пифагоров строй лидийской гаммы. Исходя из возможных построений звукоряда были получены несколько названий тетрахорда - четырехступенного звукоряда в пределах кварты. Это были дорийский, фригийский и уже упомянутый лидийский строй музыкальной гаммы.

Последнее построение музыкальной гаммы обладает такой особенностью: двигаясь по квинтам вверх и вниз, не получится точного октавного повторения исходного звука. Лишь 12 квинт приближенно равны 7 октавам, а разделяющий их интервал называется пифагоровой коммой. Несмотря на свою малость, пифагорова комма на протяжении столетий "резала ухо" музыкантам. Взяв отношение (3/2)12:27, можно найти численное значение пифагоровой коммы (1,0136).

Итак, гармония космоса была воплощена пифагорейцами в сфере музыки. Идея совершенства окружающего мира владела умами ученых и в последующие эпохи. В первой половине XVII в. И.Кеплер установил семь основных гармонических интервалов: октаву - 2/1, большую сексту - 5/3, малую сексту - 8/5, чистую квинту - 3/2, чистую кварту - 4/3, большую терцию - 5/4 и малую терцию - 6/5. С помощью этих интервалов он выводит весь звукоряд как мажорного, так и минорного наклонения. После долгих поисков гармоничных отношений "на небе", проделав огромную вычислительную работу, И.Кеплер установил, что отношения экстремальных углов скоростей для некоторых планет близки к гармоническим: Марс - 3/2, Юпитер - 6/5, Сатурн - 5/4. "Солнце гармонии засияло во всем блеске. Небесное движение есть не что иное, как ни на миг не прекращающаяся музыка", - так думал ученый. Здесь Кеплера не оставляет буйная фантазия. Небольшие расхождения в расчетах и наблюдениях он обьясняет тем, что небесный секстет должен звучать одинаково согласно и в мажоре, и в миноре, а для этого ему необходимо иметь возможность перестраивать свои инструменты.

Далее Кеплер пишет о том, что Сатурн и Юпитер "поют" басом, а Марс - тенором, Земля и Венера - альтом, а Меркурий - дискантом. Никаких доказательств он не приводит. Выполняя многочисленные расчеты, ученый устал в поисках всеобщей гармонии. "Мой мозг устает, когда я пытаюсь понять, что я написал, и мне уже трудно восстановить связь между рисунками и текстом, которую я сам когда-то нашел", - писал знаменитый астроном и математик. Наступало новое время в естествознании: на смену поискам И.Кеплера шли открытия Ньютона.

XVII век ознаменовался новыми открытиями в области математики. В 1614 году опубликованы таблицы логарифмов. Их автор - шотландец Д.Непер. Он не был математиком по профессии. Получив хорошее образование у себя на родине, Д.Непер занимался астрономией и математикой как любитель и добился некоторых важных открытий. Теперь его именем называют ряд правил и формул сферической геометрии. Впоследствии в предисловии к своему сочинению, посвященному таблицам, он писал: "Я всегда старался, насколько позволяли мои силы и способности, отделаться от скуки и трудности вычислений, докучность которых обыкновенно отпугивает многих от изучения математики".

XVIII век открыл новые страницы в истории музыки. Около 1700 года немецкий органист А.Веркмайстер осуществил гениальное решение: отказался от совершенных и несовершенных консонансов пифагорейской гаммы... Сохранив октаву, он разделил ее на 12 равных частей. Пифагорова комма исчезла. Новый музыкальный строй позволил выполнять транспонирование мелодии. С введением этого строя в музыке восторжествовала темперация (от лат. соразмерность). В чем же состояло математическое описание равномерно-темперированного строя?