Смекни!
smekni.com

Теория экономического прогнозирования (стр. 13 из 20)

Принципы, заложенные в систему ПАТТЕРН, позволяют осущест­вить прогноз и провести анализ в любой области деятельности. Рассматри­ваемая система позволяет: выбрать объект прогноза; выявить внутренние закономерности его развития; написать сценарий; сформулировать задачи и главную цель прогноза; провести анализ иерархии и декомпозицию це­лей; понять внутреннюю и внешнюю структуры объекта прогнозирования; провести анкетирование экспертов; выполнить математическую обработку данных анкетирования; количественно оценить структуры; верифициро­вать результаты; разработать алгоритм распределения ресурсов; провести распределение ресурсов; оценить распределение ресурсов.

Сравнение методов прогнозного графа и метода ПАТТЕРН показы­вает, что основное преимущество последнего состоит в наличии механизма реализации прогноза.

Метод ПАТТЕРН можно назвать комбинацией методов прогнозиро­вания и стратегического планирования.

3. ПРОВЕРКА АДЕКВАТНОСТИ И СРЕДСТВА ВЕРИФИКАЦИИ ПРОГНОЗНЫХ МОДЕЛЕЙ

Для обеспечения точности и достоверности результатов прогнозиро­вания необходима проверка адекватности или верификация прогнозной модели.

Проверка адекватности модели выполняется с использованием формальных статистических критериев. Однако такая проверка возможна при наличии надежных статистических параметров как оригинала (объекта прогнозирования), так и модели. Если по каким-то причинам такие оценки отсутствуют, то осуществляют сравнение отдельных свойств оригинала и модели. При этом первоначально должна проверяться истинность реали­зуемых функций, затем истинность структуры и, наконец, истинность дос­тигаемых при этом значений параметров. Для этого помимо модели необ­ходимо иметь функционирующий оригинал, то есть проводить сопровож­дающее моделирование.

Таблица 3.1. Методы верификации прогнозных моделей

Метод верификации Технология верификаци
Прямая верифика­ция Разработка модели того же объекта с использованием иного ме­тода прогнозирования
Косвенная верифи­кация Сопоставление результатов, полученных с использованием дан­ной модели, с данными, полученными из других источников
Консеквентная ве­рификация Верификация результатов моделирования путем аналитического или логического выведения прогноза из ранее полученных прогнозов
Верификация оппо­нентом Верификация путем опровержения критических замечаний оп­понента по прогнозу
Верификация экс­пертом Сравнение результатов прогноза с мнением эксперта
Инверсная верифи­кация Проверка адекватности прогнозной модели и объекта в ретро­спективном периоде
Частичная целевая верификация Построение условных подмоделей, эквивалентных полной мо­дели, в типовых для проектируемой системы ситуациях
Структурная вери­фикация Сопоставление структур без экспериментальной проверки со­поставления в целом

Верификация модели - оценка ее функциональной полноты, точно­сти и достоверности с использованием всей доступной информации в тех случаях, когда проверка адекватности по тем или иным причинам невоз­можна.

В прогнозировании чаще используют верификацию, так как в боль­шинстве случаев реальный объект отсутствует или разрабатываются новые (еще не существующие) функции объекта прогнозирования. В таблице 3.1 представлены наиболее часто используемые методы верификации.

В прогнозировании случай совершенного прогноза достигается крайне редко, поэтому проблема верификации прогнозной модели является одной из важнейших в прогностике. Степень совершенства прогнозов вы­ражают через различные измерители точности прогнозирования. Точность точечного прогноза в момент f, определяется разностью между прогнозом Р, и фактическим значением Fh прогнозируемого показателя в этот момент времени. Отдельный точечный прогноз не определяет точность конкрет­ной процедуры прогнозирования в целом, то есть потребуется некоторая выборка {(Pj, fj)}, на основе которой рассчитывается значение некоторого измерителя точности прогнозирования.

Важность проблемы точности прогнозирования определяет важность анализа различных ее измерителей. В настоящее время нет достаточно полного исследования всевозможных критериев точности, что затрудняет оценивание возможностей различных моделей и опыта их применения в прикладных работах по прогнозированию конкретных процессов [10].

Для измерения точности прогнозирования можно использовать лю­бой коэффициент парной корреляции между последовательностями про­гнозных и фактических значений. Классический критерий точности про­гнозирования - коэффициент корреляции Пирсона.

Максимальное значение r = 1 достигается при наличии линейной связи



(3.1)


между Р и F, т.е. когда существуют такие а0и а/>0, что Р = oq + at F.

Однако при а0 £ 0 и а, = 1 прогноз не будет совершенным, хотя кор­реляция полная и положительная; только при Р = F коэффициент корреля­ции может характеризовать совершенный прогноз.

Коэффициент ранговой корреляции Спирмэна также может быть ис­пользован в качестве измерителя точности прогнозирования. Для этого вычисляются ранги {x} и {у} элементов соответствующих последователь­ностей {PJ и {Ft}. Очевидно, что

(3.2)

Если несколько элементов из Pi или Ft имеют одинаковые ранги, то им определяется ранг, равный среднему арифметическому значений мест элементов в данной ранжировке. В этом случае последнее соотношение останется верным. Вычисляются корректирующие множители для связей соответственно для последовательностей xi и уi :

(3.3)

где г,- и /, равно числу повторений i-го ранга в соответствующих по­следовательностях. Вычисляют сумму квадратов разностей рангов

(3.4)

Если Tf или Туравно нулю, то коэффициент ранговой корреляции Спирмэна равен:

(3.5)

Коэффициент ранговой корреляции р позволяет характеризовать ка­чественную сторону последовательности прогнозов {Р/j, а именно способ­ность предсказывать точки поворота. Коэффициент ранговой корреляции можно рассматривать как дополнительный измеритель точности прогнози­рования при Pi=Fi и г, близким к 1, так как критерий р инвариантен отно­сительно линейной вариации, причем р=1 прогноз может быть далеко не совершенным, так как для этого достаточно лишь совпадения рангов.

В качестве измерителей точности прогнозирования могут быть ис­пользованы и другие коэффициенты парной корреляции, например коэф­фициент ранговой корреляции Кендэлла. Однако для характеристики ко­эффициентов парной корреляции как некоторого класса измерителей точ­ности прогнозирования достаточно провести анализ этих двух наиболее часто используемых коэффициентов, чтобы выделить общие для этого класса свойства. Во-первых, инвариантность относительно линейной ва­риации, а во-вторых, полная корреляция еще fie определяют совершенный прогноз. Еще одним важным свойством коэффициентов парной корреля­ции является возможность проверки их на значимость, так как определены соответствующие законы распределения этих статистик. Например, для коэффициента ранговой корреляции Спирмэна значимость проверяется с п-2 степенями свободы по следующей t-статистике:


(3.6)

Наиболее распространенными оценками точности прогнозирования также являются средняя ошибка аппроксимации

(3.7)

и средняя квадратическая ошибка прогнозов

(3.8)

Точность прогнозирования тем выше, чем меньше значения е или S соответственно. Совершенный прогноз достигается при e=S=0.

Одним из исследователей проблем экономического прогнозирова­ния, Г. Тейлом [10], предложен в качестве меры качества прогнозов коэф­фициент расхождения V (или коэффициент несоответствия), числителем которого является среднеквадратическая ошибка прогноза, а знаменатель равен квадратному корню из среднего квадрата реализации:



(3.9)


Если У=0, то прогноз абсолютно точен (случай «идеального» прогнозирования). Если F=l, то это означает, что прогноз близок к простой (и наивной) экстраполяции. Если У>1, то прогноз дает худший результат, чем предположение о неизменности тенденций исследуемого явления.

Коэффициент расхождения может быть использован при сопостав­лении качества прогнозов, получаемых на основе различных методов и моделей. В этом его несомненное достоинство. Величина V поддается разложению на составляющие (частные коэффициенты расхождения), харак­теризующие влияние ряда факторов (это достигается разложением числи­теля, представляющего собой средний квадрат ошибки прогноза).