Смекни!
smekni.com

Теория экономического прогнозирования (стр. 14 из 20)

В некоторых случаях более важное значение имеют распознающие способности моделей прогнозирования, особенно при краткосрочном про­гнозировании. Например, при прогнозировании выполнения месячных планов предприятий отрасли по особо учитываемой номенклатуре в начале месяца в первую очередь интерес представляет более точная оценка воз­можности выполнения плана, чем прогнозная информация о величине от­клонения от плана. В данном случае целесообразно использовать следую­щую меру точности прогнозирования:

(3.10)

где q - число подтвержденных прогнозов; р - число неподтвержденных прогнозов.

Если £~\, то имеет место случай «идеального» прогнозирования.

Таким образом, измерители точности прогнозирования по отноше­нию к инвариантности относительно линейной вариации делятся на инва­риантные и не инвариантные. Инвариантные измерители (S и коэффициен­ты парной корреляции), хотя и не позволяют сравнивать точность прогно­зирования различных процессов, могут использоваться для определения точности прогнозирования различных последовательностей прогнозных значений {Pi} при фиксированной последовательности {Ft}. Например, по­добная ситуация возникает при моделировании, когда необходимо выби­рать между несколькими моделями прогнозирования, генерирующими со­ответствующие последовательности {Ft}. Инвариантные измерители могут быть проверены на статистическую значимость, то есть с определенной доверительной вероятностью конкретное значение измерителя является обоснованным. Однако особый интерес при построении моделей прогно­зирования имеет критерий Г. Тейла, так как позволяет определить, в чем состоит расхождение: имеет место дрейф среднего или дрейф дисперсии. С другой стороны, критерий У не является инвариантным, и есть возмож­ность оценивать применимость модели для совокупности различных про­гнозируемых процессов в целом. Например, для прогнозирования по одной модели поведения отдельных предприятий или отрасли в целом.

Средняя ошибка аппроксимации е является наиболее наглядным из­мерителем точности прогнозирования, что вместе с неинвариантностью приводит к тому, что требование к точности задач прогнозирования фор­мулируется по этому критерию.

Определить точность точечного прогноза по данным формулам можно при ретроспективности прогнозирования, когда апробируется мо­дель, а также для прогнозов с малым периодом упреждения {краткосроч­ные прогнозы).

Точность и надежность прогнозов - широко распространенные в прогностической литературе термины, смысл которых, как это представля­ется на первый взгляд, вполне очевиден. Однако содержание этих терми­нов часто толкуется достаточно субъективно. Нередки случаи, когда одно понятие подменяется другим ввиду отсутствия строгого определения дан­ных категорий [39].

О точности прогноза принято судить по величине погрешности (ошибки) прогноза - разности между прогнозируемым и фактическим зна­чением (реализацией) исследуемой переменной. Однако такой подход к оценке точности возможен только в двух случаях. Во-первых, когда пери­од упреждения уже окончился и исследователь имеет фактические значе­ния переменной. При краткосрочном прогнозировании это вполне реально. Во-вторых, когда прогноз разрабатывается ретроспективно, то есть про­гнозирование осуществляется для некоторого момента времени в про­шлом, для которого уже имеются фактические данные. Так поступают в тех случаях, когда проверяется разработанная методика прогноза.

При этом имеющаяся информация делится на две части. Одна из них, охватывающая более ранние данные, служит для оценивания пара­метров прогностической модели, а более поздние данные рассматриваются как реализации соответствующих прогностических оценок. Полученные ретроспективно ошибки прогноза в какой-то мере характеризуют точность примененной методики прогнозирования и могут оказаться полезными при сопоставлении нескольких методов. В то же время величину ошибки рет­роспективного прогноза нельзя рассматривать как окончательное доказа­тельство пригодности или, наоборот, непригодности применяемого метода прогнозирования. К ней следует относиться с известной осторожностью и при ее применении в качестве меры точности необходимо учитывать, что она получена при использовании лишь части имеющихся данных. Однако эта мера точности обладает большей наглядностью и уж во всяком случае, более надежна, чем погрешность прогноза, исчисленная для периода, ха­рактеристики которого уже были использованы при оценивании парамет­ров модели. В последнем случае погрешности, как правило, будут незна­чительны и мало зависимы от теоретической обоснованности примененной для прогнозирования модели. Точность же прогнозов будет преувеличен­ной и в известном смысле иллюзорной.

Если для ретроспективного прогнозирования применяется модель, содержащая одну или несколько экзогенных переменных, то точность про­гноза будет в значительной мере зависеть от того, насколько точно опреде­лены значения этих переменных на период упреждения. При этом возможны два пути: воспользоваться фактическими значениями экзогенных пере­менных (так называемый прогноз ex post) и ожидаемыми их значениями (так называемый прогноз ex ante). Естественно, что точность прогноза ех post будет выше, чем прогноза ex ante, так как в первом случае будет ис­ключено искажающее влияние погрешности в значении экзогенных пере­менных. О степени погрешности прогноза можно судить по относительной ошибке - отношению абсолютной погрешности прогноза к ожидаемому (или фактическому) значению признака. Проверка точности единичного прогноза, как правило, мало, что может сказать исследователю. В самом деле, на формирование исследуемого явления влияет множество разнооб­разных факторов, поэтому полное совпадение или значительное расхожде­ние прогноза и его реализации может быть следствием просто особо благо­приятных (или неблагоприятных) стечении обстоятельств. Хороший единичный прогноз может быть получен и по плохой модели, и наоборот. От­сюда следует, что о качестве прогнозов применяемых методик и моделей можно судить лишь по совокупности сопоставлений прогнозов и их реали­зации.

Измерители качества прогнозов (их точности) рассматривались вы­ше при условии, что исследователь располагает информацией об истинных значениях величин, которые он оценивал в ходе разработки прогнозов. Та­кие меры качества, несомненно, представляют ценность при изучении раз­личных методик прогнозирования. Однако в практической работе пробле­му точности прогноза надо решать тогда, когда период упреждения еще не прошел и истинное значение прогнозируемой переменной неизвестно. В этом случае проблема точности может рассматриваться в плане сопостав­ления априорных качеств, свойств, присущих альтернативным прогности­ческим моделям. Так, если прогнозирование осуществляется статистиче­скими методами, то, вероятно, понятие точности прогноза можно сделать более узким, а именно связав априорную точность прогноза с размером доверительного интервала. Модель, дающая более узкий доверительный интервал при одной и той же доверительной вероятности, и является более точной (при этом теоретическая обоснованность сравниваемых моделей является примерно равной).

Очевидно, что надежность прогноза определяется вероятностью на­ступления прогнозируемого события, - т. е. реализации соответствующей прогностической оценки. Чем она выше, тем выше надежность. Вероят­ность реализации может быть оценена субъективно (экспертное прогнози­рование) или может быть связана с доверительными интервалами прогно­за, если последний основывается на статистической модели.

Рассмотренные понятия априорной точности и надежности прогно­зов, связанные с доверительными интервалами, являются в значительной мере условными показателями. Они могут использоваться в практической работе лишь при условии, что принятая для получения прогнозов модель имеет серьезное теоретическое обоснование и спецификация модели кор­ректна. В противном случае полученные доверительные интервалы лишь создают иллюзию точности. Практика разработки экономических прогно­зов опирается на целую систему методов, среди которых статистические методы прогнозирования занимают важное место. Решающую роль при статистическом подходе к прогнозированию играет выбор соответствую­щей модели, которая, будучи наполненной числовыми параметрами, ста­новится непосредственным инструментом прогнозирования - так называе­мым предиктором. Располагая предиктором, можно получить варианты прогноза, отвечающие определенным условиям и гипотезам, учтенным при его построении. Вместе с тем необходимо помнить, что механическое ис­пользование предиктора может стать причиной серьезных погрешностей.

Экономическое прогнозирование слишком ответственное дело, для того чтобы можно было ограничиться одними формальными построениями и расчетами. Цель модели - не заменить суждения и опыт специалиста, а дать ему в руки инструмент, позволяющий более глубоко проникнуть в существо исследуемых явлений, инструмент, в котором специфическим образом обобщена и приведена в систему разнообразная статистическая информация. Получаемые на основе предикторов прогнозы имеют смысл только в рамках тех условий, гипотез и предположений, которые были уч­тены при разработке соответствующих статистических моделей и при их применении для прогнозирования. Таким образом, разработка и примене­ние моделей в прогностических целях предполагают углубленный эконо­мический и экономико-статистический анализ.

4. ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПРОЦЕССА ПРОГНОЗИРОВАНИЯ