Смекни!
smekni.com

Взаимосвязь технико-экономических показателей работы предприятия и фондоотдачи (стр. 3 из 4)

;

;

Откуда

Все численные значения коэффициентов множественной регрессии найдены. Тогда уравнение связи в стандартизированном виде будет иметь следующий вид:

.

6. Построение модели в натуральных единицах измерения

Для объективного анализа показателей изучаемого социально-экономического явления необходимо перейти от абстрактной стандартизированной модели к математической модели в натуральных единицах измерения. Уравнение множественной регрессии для прямолинейной связи имеет следующий вид:

Для решения этого уравнения регрессии необходимо определить численные значения коэффициентов эластичности b1, b2, b3. Для этого воспользуемся следующей формулой:

,

где

– среднеквадратическое отклонение результирующего признака, которое определяется по формуле

.

Для расчета среднеквадратического отклонения и коэффициентов эластичности необходимо провести некоторые промежуточные расчеты, результаты которых представлены в табл. 5.

Таблица 5 Промежуточные расчеты для вычисления cреднеквадратического отклонения

46 65,200 -0,417 0,1739
47 65,200 -0,417 0,1739
48 65,300 -0,317 0,1005
49 65,400 -0,217 0,0471
50 65,500 -0,117 0,0137
51 65,600 -0,017 0,0003
52 65,700 0,083 0,0069
53 65,700 0,083 0,0069
54 65,800 0,183 0,0335
55 65,900 0,283 0,0801
56 66,000 0,383 0,1467
57 66,100 0,483 0,2333
Итого: 787,400 1,0167

Тогда

;
;
.

;

;

.

В связи с тем что в формулы расчета коэффициентов эластичности входят значения

,
,
с тремя десятичными знаками, а также численные значения коэффициентов эластичности малы, их следует округлить до пятого десятичного знака, чтобы модель более точно отображала результаты моделирования и прогнозирования.

Тогда уравнение множественной регрессии для прямолинейной связи для изучения фондоотдачи будет иметь следующий вид:

В этом уравнении регрессии его свободный член

является неизвестной величиной. Для определения численного значения
необходимо в это уравнение подставить средние значения результирующей и факторных величин. Тогда уравнение примет вид:

или

.

Тогда экономико-математическая модель изучаемого явления в натуральных единицах измерения будет иметь следующий окончательный вид:

.

Это уравнение регрессии необходимо проверить по двум критериям: по сходству сумм расчетных и экспериментальных значений фондоотдачи и по коэффициенту множественной корреляции.

Вычислим расчетные значения фондоотдачи по всем периодам времени:

;

;

;

;

;

;

;

;

;

;

;

.

Сумма всех расчетных значений фондоотдачи равна 787,40368 и совпадает с суммой эмпирических значений этого показателя, т.е. выполняется условие:

SY эi = 787,4 » SYрi = 787,40368,

следовательно, по этому критерию можно сделать вывод о правильности построения экономико-математической модели хозяйственной деятельности предприятия.

Вычислим численное значение коэффициента множественной корреляции по формуле:


= 0,91.

Так как численное значение коэффициента множественной корреляции R превышает численное значение любого из парных коэффициентов корреляции

,
,
, а также не превышает единицы, можно сделать вывод о правильности построения экономико-математической модели хозяйственной деятельности фермерского хозяйства и по этому критерию.

Таким образом, гипотеза о прямолинейной связи между показателями рассматриваемой системы верна, и полученное уравнение множественной регрессии может использоваться в качестве модели для анализа и прогнозирования хозяйственной деятельности предприятия.

7. Исследование экономико-математической модели

Оценим степень влияния каждого фактора, включенного в эконометрическую модель, на формирование результирующей величины – уровня фондоотдачи от хозяйственной деятельности предприятия.

Для этого воспользуемся методом цепных подстановок, сущность которого заключается в последовательном, поочередном изменении численного значения каждого фактора на одну и ту же величину и в сравнении каждого последующего результата с предыдущим. Увеличим поочередно численные значения факторных переменных на 10 % и сравним полученные результаты с результатами хозяйственной деятельности в последнем (двенадцатом) временном периоде. Запишем уравнение расчетного определения фондоотдачи:

.

Увеличим каждый факторный признак поочередно на 10 %:

;

;

.

Сравним каждый последующий результат с предыдущим:

;

;

Результаты этих исследований показывают, что в данном случае существенное влияние на фондоотдачу оказывают простои оборудования (0,082 тыс.грн.). Менее влияет на фондоотдачу стоимость активной части основных фондов (0,016 тыс. грн), что касается среднечасовой выработки одного рабочего, то она оказывает негативное влияние. Исследования позволяют сделать следующие выводы о значимости каждого фактора в формировании деятельности предприятия. Факторы оказывают положительное влияние на формирование фондоотдачи предприятия (об этом свидетельствует знак «+» перед фактором).