Смекни!
smekni.com

Обобщ нно булевы решетки (стр. 1 из 7)

Федеральное агентство по образованию

Государственное образовательное учреждение
высшего профессионального образования
Вятский государственный гуманитарный университет

Математический факультет

Кафедра алгебры и геометрии

Выпускная квалификационная работа

Обобщенно булевы решетки

Выполнил:

студент V курса математического факультета

Онучин Андрей Владимирович

Научный руководитель:

к.ф.-м.н., доцент кафедры алгебры и геометрии ВятГГУ
Чермных Василий Владимирович

Рецензент:

д.ф.-м.н., профессор, зав. кафедрой алгебры и геометрии ВятГГУ

Вечтомов Евгений Михайлович

Работа допущена к защите в государственной аттестационной комиссии

«___» __________2005 г. Зав. кафедрой Е.М. Вечтомов

«___»__________2005 г. Декан факультета В.И. Варанкина

Киров

2005

Содержание

Введение.......................................................................................................... 3

Глава 1............................................................................................................. 4

1.1. Упорядоченные множества................................................................... 4

1.2. Решётки.................................................................................................. 5

1.3. Дистрибутивные решётки..................................................................... 7

1.4. Обобщённые булевы решётки, булевы решётки................................. 8

1.5. Идеалы................................................................................................... 9

Глава 2........................................................................................................... 11

2.1. Конгруэнции....................................................................................... 11

2.2. Основная теорема............................................................................... 16

Библиографический список.......................................................................... 22


Введение

Булева решётка представляет собой классический математический объект, который начал интенсивно изучаться в работах М. Стоуна 30-е годы 20-го века, расширением этого понятия до обобщённо булевых решёток занимались Г. Гретцер и Е. Шмидт в своих трудах конца 50-х годов.

Цель данной работы: установление взаимно однозначного соответствия между конгруэнциями и идеалами в обобщённо булевых решётках. (Для булевых решёток это положение доказано в книге [2], кроме того, сформулировано в книге [3] в качестве упражнений). А также – установление связи между обобщённо булевыми решётками и булевыми кольцами.

Данная дипломная работа состоит из двух глав: в первой главе даны основные понятия, а так же содержатся базовые сведения из теории решёток. Кроме того, в первой главе рассмотрено несколько простейших теорем.

Вторая глава представляет собой основную часть данной дипломной работы. Опираясь на работы Гретцера Г., но более подробно, рассмотрены свойства конгруэнций и связь конгруэнций и идеалов в обобщённо булевых решётках (Теоремы 2.1, 2.2, 2.3.). Кроме того реализована основная цель данной дипломной работы: установлена связь между булевыми кольцами и обобщённо булевыми решётками (Основная теорема).


Глава 1

1.1. Упорядоченные множества

Упорядоченным множеством P называется непустое множество, на котором определено бинарное отношение

, удовлетворяющее для всех
следующим условиям:

1. Рефлексивность:

.

2. Антисимметричность. Если

и
, то
.

3. Транзитивность. Если

и
, то
.

Если

и
, то говорят, что
меньше
или
больше
, и пишут
или
.

Примеры упорядоченных множеств:

1. Множество целых положительных чисел, а

означает, что
делит
.

2. Множество всех действительных функций

на отрезке
и
означает, что
для
.

Цепью называется упорядоченное множество, на котором для любых

имеет место
или
.

Используя отношение порядка, можно получить графическое представление любого конечного упорядоченного множества P. Изобразим каждый элемент множества P в виде небольшого кружка, располагая x выше y, если

. Соединим x и y отрезком. Полученная фигура называется диаграммой упорядоченного множества P.

Примеры диаграмм упорядоченного множества:

1.2. Решётки

Верхней гранью подмножества Х в упорядоченном множестве Р называется элемент a из Р, больший или равный всех x из X.

Точная верхняя грань подмножества X упорядоченного множества P – это такая его верхняя грань, которая меньше любой другой его верхней грани. Обозначается символом sup X и читается «супремум X».

Согласно аксиоме антисимметричности упорядоченного множества, если точная верхняя грань существует, то она единственна.

Понятия нижней грани и точной нижней грани (которая обозначается inf X и читается «инфинум») определяются двойственно. Также, согласно аксиоме антисимметричности упорядоченного множества, если точная нижняя грань X существует, то она единственна.


Решёткой
называется упорядоченное множество L, в котором любые два элемента x и y имеют точную нижнюю грань, обозначаемую
, и точную верхнюю грань, обозначаемую
.

Примеры решёток:

Примечание. Любая цепь является решёткой, т.к.

совпадает с меньшим, а
с большим из элементов
.

Наибольший элемент, то есть элемент, больший или равный каждого элемента упорядоченного множества, обозначают 1, а наименьший элемент, то есть меньший или равный каждого элемента упорядоченного множества, обозначают 0.

На решётке можно рассматривать две бинарные операции:

- сложение и

- произведение

Эти операции обладают следующими свойствами:

1.

,
идемпотентность;

2.

,
коммутативность;

3.

,
ассоциативность;

4.

,
законы поглощения.

ТЕОРЕМА 1.1. Пусть L - множество с двумя бинарными операциями

, обладающими свойствами (1) – (4). Тогда отношение
(или
) является порядком на L, а возникающее упорядоченное множество оказывается решёткой, причём:
и
.