где:
ХMe— нижняя граница медианного интервала;
h — величина интервала;
SMe-1— накопленная частота интервала, предшествующего медианному;
mMe— частота медианного интервала.
Для определения медианного интервала необходимо рассчитывать накопленную частоту каждого последующего интервала до тех пор, пока она не превысит Ѕ суммы накопленных частот (в нашем случае 73,35).
Таким образом, медианным является интервал с границами 6000-8000. Тогда медиана равна:
Интервал | Накопленная частота, млн. чел. |
До 4000 | 22,1 |
4000-6000 | 49,9 |
6000-800 | 75,1 |
Задача 7
По данным о вводе в действие жилых домов (млн. м2) рассчитать цепные, базисные
а) абсолютные приросты;
б) темпы роста;
в) темпы прироста.
Показатель | 2001 | 2002 | 2003 | 2004 | 2005 |
Общая площадь, млн. м2 | 7,0 | 6,5 | 5,9 | 5,5 | 4,9 |
Решение
Абсолютный прирост | Темп роста, % | Темп прироста, % | |||||
цепной | базисный | цепной | базисный | цепной | базисный | ||
1 | 7,0 | ||||||
2 | 6,5 | 6,5-7,0=-0,5 | 6,5-7,0=-0,5 | 6,5/7,0*100=92,86 | 6,5/7,0*100=92,86 | 92,86-100= -7,14 | 92,86-100= -7,14 |
3 | 5,9 | 5,9- 6,5=-0,6 | 5,9-7,0= -1,1 | 5,9/6,5*100 =90,77 | 5,9/7,0*100=84,29 | 90,77-100= -9,23 | 84,29-100= -15,71 |
4 | 5,5 | 5,5-5,9=-0,4 | 5,5-7,0=-1,5 | 5,5/5,9*100=78,57 | 5,5/7,0*100=78,57 | 93,22-100= -6,78 | 78,57-100=--21,43 |
5 | 4,9 | 4,9-5,5=-0,4 | 4,9-7,0=-2,1 | 4,9/5,5*100=89,09 | 4,9/7,0*100=70,00 | 89,09-100= -10,91 | 70,00-100= -30,00 |
Задача 8
Имеются данные о реализации овощной продукции в области. Определите индекс товарооборота, сводный индекс цен, сводный индекс физического объема реализации.
Наименование товара | Август | Сентябрь | ||
Цена за 1 кг, руб. (p0) | Продано, т (q0) | Цена за 1 кг, руб. (p1) | Продано, т (q1) | |
Лук | 12 | 18 | 12 | 15 |
Картофель | 11 | 22 | 10 | 27 |
Морковь | 9 | 20 | 7 | 24 |
Итого | х | Х | х | х |
Решение:
Добавим в таблицу расчетные графы:
Наименование товара | Август | Сентябрь | Расчетные графы | ||||
Цена за 1 кг, руб. (p0) | Продано, т (q0) | Цена за 1 кг, руб. (p1) | Продано, т (q1) | P0q0 | P1q1 | P0q1 | |
Лук | 12 | 18 | 12 | 15 | 216 | 180 | 180 |
Картофель | 11 | 22 | 10 | 27 | 242 | 270 | 297 |
Морковь | 9 | 20 | 7 | 24 | 180 | 168 | 216 |
Итого | х | Х | х | х | 638 | 618 | 693 |
Рассчитаем индекс товарооборота:
или 96, 9%Товарооборот в целом по данной товарной группе в текущем периоде по сравнению с базисным уменьшился на 3,1 % (100% - 96,9%)
Вычислим сводный индекс цен
или 89,2%По данной товарной группе цены в сентябре по сравнению с августом в среднем снизились на 10,8%.
3) Рассчитаем индекс физического объема реализации:
или 108,6 %Физический объем реализации увеличился на 8,6%.
Задача 9
По данным таблицы проведите анализ цен реализации товара в 2-х регионах.
Регион | Август | Сентябрь | ||
Цена руб. (p0) | Продано, шт. (q0) | Цена, руб. (p1) | Продано, шт. (q1) | |
1 | 12 | 10000 | 13 | 8000 |
2 | 17 | 20000 | 19 | 9000 |
Итого | х | 30000 | х | 27000 |
Решение:
Добавим в таблицу расчетные графы
Регион | Август | сентябрь | Расчетные графы | ||||
Цена руб. (p0) | Продано, т (q0) | Цена за 1 кг., руб. (p1) | Продано, т (q1) | P0q0 | P1q1 | P0q1 | |
1 | 12 | 10000 | 13 | 8000 | 120000 | 234000 | 216000 |
2 | 17 | 20000 | 19 | 9000 | 340000 | 171000 | 153000 |
Итого | Х | 30000 | х | 27000 | 46000 | 405000 | 369000 |
Вычислим индекс переменного состава.
Из данных таблицы видно, что цена в каждом регионе в сентябре по сравнению с августом возросла. В целом же, средняя цена снизилась на 2,2%. (97,8% - 100%). Такое несоответствие объясняется влиянием изменением структуры реализации товаров регионам: в сентябре по более высокой цене продавали товара вдвое больше, в сентябре
Ситуация принципиально изменилась. В целом по полученному значению индекса структурных сдвигов можно сделать вывод, что цены за счет структурных сдвигов цены снизились на 10,9% (100%-89,1%)
Задача 10
По данным таблицы определите среднее линейное отклонение, размах вариации, дисперсию, среднее квадратическое отклонение, коэффициент вариации.
Группы работников по стажу, лет | Количество рабочих, чел. |
6-10 | 15 |
10-14 | 30 |
14-18 | 45 |
18-22 | 10 |
Решение:
Расчетная таблица имеет следующий вид:
Группы работников по стажу, лет | Количество рабочих, чел. (f) | Середина интервала, (х) | хf | ½x-`x½ | ½x-`x½f | (x-`x)2 | (x-`x)2f | x2 | x2f |
6-10 | 15 | 8 | 120 | 6 | 90 | 36 | 540 | 64 | 960 |
10-14 | 30 | 12 | 360 | 2 | 60 | 4 | 120 | 144 | 4320 |
14-18 | 45 | 16 | 720 | 2 | 90 | 4 | 180 | 256 | 11520 |
18-22 | 10 | 20 | 200 | 6 | 60 | 36 | 360 | 400 | 4000 |
Всего | 100 | 14 | 1400 | 16 | 300 | 80 | 1200 | 864 | 20800 |
1) Определим средний стаж по формуле средней арифметической
лет2) Определим среднее линейное отклонение
года3) Рассчитаем дисперсию
4. Рассчитаем среднее квадратическое отклонение:
года5.Найдем размах вариации:
R=22-6=16 лет
6. Найдем коэффициент вариации:
Рассчитанные показатели свидетельствуют о том, что средний стаж работы составляет 14 лет, отклонение индивидуальных значений стажа от среднего составляет в среднем 3 года; среднее квадратическое отклонение – 3,5 года - небольшое, следовательно, средняя арифметическая хорошо отражает представленную совокупность. Совокупность однородна по изучаемому признаку. Вариация признака < 33, т.е. умеренная.