W1(s): sY(s) = 2U(s);
W2(s): 2s2Y(s)+sY(s)+4Y(s)=7U(s).
Данные уравнения можно преобразовать, вынеся Y(s) и U(s) за скобки:
W1(s): sY(s) = 2U(s);
W2(s): Y(s)·(2s2+s+4)=7U(s).
Отсюда получено:
W1(s): Y(s) =
W2(s): Y(s) =
.Тогда:
Передаточная функция объекта управления:
· Передаточная функция разомкнутой системы:
· Характеристическое выражение замкнутой системы:
· передаточные функции замкнутой системы
Ф3(s) – по заданию:
ФЕ(s) – по ошибке:
ФВ(s) – по возмущению:
При определении передаточной функции по возмущению принимается Wу.в. = Wоу. Тогда:
.· По передаточным функциям определим коэффициенты усиления путем подстановки в них s = 0:
К3 = Ф3(0) = 1 – по заданию;
КЕ = ФЕ(0) = 0 – по ошибке;
Кв = Фв(0) = 0 – по возмущению.
· Определим устойчивость АСР по критерию Гурвица.
Так как коэффициенты ХВЗС
(степень полинома n = 4), то матрица Гурвица имеет вид:Диагональные миноры матрицы равны соответственно:
Поскольку все определители положительны, то АСР является устойчивой.
· Определим вид переходных процессов по заданию, ошибке и возмущению:
а) По заданию:
Корни знаменателя:
Изображение разбивается на сумму дробей:
.Тогда оригинал y(t), согласно таблицам, имеет вид:
y(t) = y0 + y1,2(t) + y 3,4(t) =
+ ;где a1,2, α3,4 и w1,2, w3,4 - действительная и мнимая части пары комплексных корней s1,2 и s3,4 соответственно.
C1,2, С3,4 и D1,2, D3,4 – действительная и мнимая части пары коэффициентов М1 и М3 соответственно.
Для корня s0 = 0:
;Для корней
: = ;Для корней
: ;Тогда:
Получим оригинал:
б) По ошибке:
Корни знаменателя:
Изображение разбивается на сумму дробей:
.Тогда оригинал y(t), согласно таблицам, имеет вид:
y(t) = y1,2(t) + y 3,4(t) =
+ ;где a1,2, α3,4 и w1,2, w3,4 - действительная и мнимая части пары комплексных корней s1,2 и s3,4 соответственно.
C1,2, С3,4 и D1,2, D3,4 – действительная и мнимая части пары коэффициентов М1 и М3 соответственно.
Для корней
:Для корней
: ;Тогда:
Получим оригинал:
в) По возмущению:
Корни знаменателя:
Изображение разбивается на сумму дробей:
.Тогда оригинал y(t), согласно таблицам, имеет вид:
y(t) = y1,2(t) + y 3,4(t) =
+ ;где a1,2, α3,4 и w1,2, w3,4 - действительная и мнимая части пары комплексных корней s1,2 и s3,4 соответственно.
C1,2, С3,4 и D1,2, D3,4 – действительная и мнимая части пары коэффициентов М1 и М3 соответственно.
Для корней
:Для корней
: ;Тогда:
Получим оригинал: