Смекни!
smekni.com

Передаточные функции одноконтурной системы (стр. 1 из 2)

Практическая работа № 1

1. По заданным дифференциальным уравнениям определить операторные уравнения при нулевых начальных условиях, передаточные функции, структурные схемы звеньев, характеристические уравнения и их корни. Показать распределение корней на комплексной плоскости.

Оценить устойчивость каждого из звеньев.

а)

; б)
.

2. По заданной передаточной функции записать дифференциальное уравнение:

.

1. а). Дифференциальное уравнение можно записать в виде:

.

Обозначим Y(s) и F(s) как изображения сигналов соответственно y и f, тогда операторное уравнение (при нулевых начальных условиях) примет вид:

1,25s3Y(s) – 4s2Y(s) + 5sY(s) = 3F(s) – sF(s).

Данное уравнение можно преобразовать, вынеся Y(s) и F(s) за скобки:

Y(s). (1,25s3 – 4s2 + 5s) = F(s). (3 – s).


Отсюда получено:

.

Очевидно, что входной сигнал x отсутствует, и выходной сигнал у определяется только внешним воздействием f (система, действующая по возмущению):

, то получается уравнение Y(s) = WF(s).F(s). Структурная схема объекта приведена на рис. 1.

Рис.1

Рис. 2

Передаточная функция имеет знаменатель, называемый характеристическим выражением:


A(s) =

.

Если приравнять данное выражение к нулю, то образуется характеристическое уравнение

, корни которого:

,
и
.

Распределение корней на комплексной плоскости показано на рис. 2. По рисунку видно, что корни лежат в правой полуплоскости, следовательно, объект неустойчив.

б) Дифференциальное уравнение можно записать в виде:

.

Обозначим Y(s), X(s) и F(s) как изображения сигналов соответственно y, x и f, тогда операторное уравнение (при нулевых начальных условиях) примет вид:

2s2Y(s) + 4sY(s) + 10Y(s) = 3X(s) + 4sF(s).

Данное уравнение можно преобразовать, вынеся Y(s) и X(s) за скобки:

Y(s). (5s2 + 4s + 10) = 3X(s) + 4sF(s).

Отсюда получено:

.

Если обозначить передаточные функции объекта как

и
,

то получается уравнение Y(s) = Wx(s).X(s) + WF(s).F(s). Структурная схема объекта приведена на рис. 3.

Рис. 3

Характеристическая функция имеет вид:

,

а характеристическое уравнение:

.

Корни этого уравнения равны:

и
.

Распределение корней на комплексной плоскости показано на рис. 4:

Рис. 4.

Все корни характеристического уравнения лежат в левой полуплоскости, очевидно, что объект устойчив.

2. Дана передаточная функция вида:

Зная, что по определению,

, получим:

, тогда:

.

Раскрывая скобки:


Применяя к полученному выражению обратное преобразование Лапласа, находим искомое дифференциальное уравнение:

.

Практическая работа № 2

Дана одноконтурная АСР, для которой определена передаточная функция регулятора (Р) с настройками и дифференциальное уравнение объекта управления (ОУ). Требуется определить:

- передаточную функцию разомкнутой системы W∞(s),

- характеристическое выражение замкнутой системы (ХВЗС),

- передаточные функции замкнутой системы Фз(s) – по заданию, Фв(s) – по возмущению, ФЕ(s) – по ошибке,

- коэффициенты усиления АСР,

- устойчивость системы.

Р - ПИ-регулятор с ПФ вида

;

дифференциальное уравнение объекта управления:

.

Определим передаточную функцию объекта:

Wоб(s)

.

Передаточная функция разомкнутой системы имеет вид:

Характеристическое выражение замкнутой системы:

;

Передаточные функции замкнутой системы:

- по заданию;

- по ошибке;

- по возмущению.

По передаточным функциям определим коэффициенты усиления путем подстановки в них s = 0:

К3 = Ф3(0) = 1 – по заданию;

КЕ = ФЕ(0) = 0 – по ошибке;

Кв = Фв(0) = 0 – по возмущению.

Определим устойчивость АСР по критерию Гурвица.

Так как коэффициенты ХВЗС а3 = 4, а2 = 6, а1 = 18, а0 = 4 (степень полинома n = 3), то матрица Гурвица имеет вид:

Диагональные миноры матрицы равны соответственно:

Поскольку все определители положительны, то АСР является устойчивой.

Практическая работа № 3

По табличным данным построить переходную кривую объекта, определить параметры передаточной функции объекта, рассчитать настройки ПИД-регулятора, обеспечивающие 20%-е перерегулирование.

DXвх = 5,5 кПа; DY = 0,149 %; tзап = 40 сек


t, мин 0 20 50 80 110 140 170 200 230 260
DY 0 0,009 0,032 0,060 0,089 0,116 0,130 0,141 0,149 0,149

Полученная переходная характеристика изображена на рисунке 5:

Рис. 5. Переходная характеристика.

Установившееся значение выходной величины составляет:

;

Коэффициент усиления равен:

;

Постоянная времени равна:

.

Для процесса с 20 % перерегулированием ПИД-регулятора, его настройки:

;

;

.

Практическая работа № 4

Дана одноконтурная АСР. Требуется определить:

· передаточные функции регулятора и объекта управления,

· передаточную функцию разомкнутой системы W∞(s),

· характеристическое выражение замкнутой системы (ХВЗС),

· передаточные функции замкнутой системы Фз(s) – по заданию,

Фв(s) – по возмущению, ФЕ(s) – по ошибке,

· коэффициенты усиления АСР,

· примерный вид переходных процессов по заданию, ошибке и возмущению,

· устойчивость системы.

Структурная схема АСР:


W1(s):

; W2(s):
;

K1 = 1,2; K0 = 1,0; K = 1,0

· Передаточная функция регулятора:

.

· Передаточная функция объекта управления:

.

Определим операторные уравнения звеньев объекта управления: для этого обозначим Y(s) и U(s) как изображения сигналов соответственно y и u, тогда операторные уравнения примут вид: