Смекни!
smekni.com

Конвертер 2,5 млн.тонн. Установка непрерывной разливки стали сляба 1200 100мм (стр. 1 из 5)

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ГОУ ВПО

Магнитогорский государственный технический университет им. Г. И. Носова

Филиал в г. Белорецке

Машиностроительные технологии

и металлургическое оборудование

Курсовая работа

По дисциплине:

Технологические линии и комплексы

металлургических цехов

Тема: Конвертор2,5 млн.тонн.

Установка непрерывной разливки стали сляба 1200/100мм

Пояснительная записка

Д. БФ. 150404. 1039. КП. 09. ПЗ. 021

Исполнитель: студент группы КМБ – 06 Малинин В.С.

Руководитель: доцент, к.т.н. Емченко В. С.

Белорецк

2009

Задание:

Выполнить технологическую схему сталеплавильного комплекса производительностью кислородного конвертора 2,5 млн.тонн. УНРС 1200/100мм2.

В расчетно-конструкторской части необходимо:

- выполнить схему технологических грузопотоков кислородно-конверторного комплекса;

- выбрать емкость конвертеров;

- рассчитать потребное количество основного технологического оборудования;

- рассчитать потребное количество МНЛЗ;

Перечень агрегатов:

  1. Конвертор;
  2. Миксерное отделение;

3. Чугуновозы;

4. Бункерное устройство для сырья (дозаторы);

5. Участок подготовки металлолома;

6. Участок шлакопереработки;

7. Установка МНЛЗ;

8. Вакуматор;

9. Печь – ковш;

10. Кислородный комплекс;

11. Известково-доломитовый комплекс;

12. Копровый цех;

13. Участок шлаковых отвалов.

Технические данные конвертора:

Годовая производительность кислородного конвертора 2,5 млн.тонн

Продолжительность цикла плавки - 40 мин.;

Выход годной стали с 1 – й плавки - 90 %;

Выход годной заготовки после разливки на МНЛЗ - 98 %;

Коэффициент загрузки конвертора - 0,8;

Сечение сляба □ - 1200 мм

/ 100 мм2

75 % чугуна, 25 % металлолома;

Содержание

Введение……………………………………………………………………………………. 4
1 Общая часть………………………………………………………………………………... 5
1.1 Кислородно-конвертерное производство стали…………………………………………. 5
1.2 Производительность конвертерного цеха ………………………………………………. 7
1.3 Основные грузопотоки цеха ……………………………………………………………… 9
1.4 Устройство кислородного конвертора ………………………………………………….. 9
1.5 Шихтовые материалы ……………………………………………………………………. 13
1.6 Технология плавки………………………………………………………………………… 13
1.7 Машины непрерывного литья заготовок………………………………………………… 15
2 Расчетная часть….……………………..………………………………………………….. 17
Приложение А…………………………………………………………………………… 21
Список используемой литературы………………………………………………………. 22

Введение

Развитие сталеплавильного производства в мире характеризуется вытеснением мартеновского способа и расширением кисло­родно-конвертерного и электросталеплавильного способов вы­плавки стали с увеличением единичной мощности сталеплавиль­ных агрегатов. Но вместе с заменой мартеновских печен кислородными конвертерами возникла проблема использования стального лома, поскольку доля его в шихте кислородных кон­вертеров составляет около 25 %. В связи с этим получают даль­нейшее развитие электродуговые печи, работающие в основном на металлоломе. Таким образом, основное направление увеличе­ния производства стали на ближайшее время — это сочетание кислородно-конвертерного и электросталеплавильного способов. При этом принимаются меры по увеличению интенсивности про­дувки конвертеров кислородом, сокращающей длительность плавки.

Применение в кислородно-конвертерных цехах систем автома­тизации позволяет повысить их производительность, улучшить качество стали, снизить расход кислорода и ферросплавов. Наи­более перспективно управление процессом плавки с помощью ЭВМ на базе динамической модели. Получит дальнейшее развитие выплавка стали в конвертерах с донным газокислородным дутьем, которые требуют цехов меньшей высоты, чем обычные кислородно-конвертерные; в ряде случаев они могут быть установлены в су­ществующих мартеновских цехах.

Преимущества непрерывного литья заготовок — не только в сокращении цикла металлургического производства, но, глав­ное, — повышении качества отливок в связи с высокой степенью их однородности и больших технико-экономических преимуще­ствах, которые определяли весьма высокие темпы его внедрения.

Дальнейшее развитие МНЛЗ будет идти в сочетании с соз­данием новых высокопроизводительных агрегатов большой еди­ничной мощности и автоматизации систем управления работой конвертеров и электродуговых печей. Увеличение скорости раз­ливки стали будет связано с разработкой новых конструкций кристаллизаторов с равномерным теплоотводом по периметру и более эффективным использованием длины.

Одним из главных направлений в металлургическом произ­водстве является совмещение непрерывной разливки стали с про­каткой и создание совершенных конструкций литейно-прокатных агрегатов. Совмещение разливки и прокатки стали является важным этапом на пути к созданию полностью автоматизирован­ного непрерывного процесса получения проката из жидкой стали.

1 Общая часть

1.1 Кислородно-конвертерное производство стали

Впервые в мировой практике продувка чугуна кислородом была осуществлена инженером Н. И. Мозговым на машиностроительном заводе «Большевик» в г. Киеве в 1933 году. В период 1937—39 гг. в АН УССР была проведена серия опытов по продувке кислоро­дом чугуна в ковшах с целью снижения содержания кремния, марганца и углерода. В 1944 г. продували чугун кислородом в конвертерах на Мытищинском машиностроительном заводе «Динамо», а за период 1944—52 годы экспериментировали про­дувку кислородом конвертеров вместимостью до 12,5 т различными способами: боковым, донным и подачей сверху. Б 1945г. был пущен первый кислородный конвертер на Тульском машинострои­тельном заводе, а в 1955—1957 гг. введены в строй конвертерные печи на Днепропетровском и Криворожском металлургических заводах.

Большой вклад в развитие кислородного способа производства стали внес коллектив ЦНИИЧМ под руководством акад. И. П. Бар­дина. В зарубежной практике начали применять кислород в кон­вертерном производстве в Австрии (фирма «Фёст») с 1949 г.

В последние годы кислородно-конвертерный способ получения стали стал ведущим, вытеснив ранее господствовавший мартенов­ский способ, и обеспечивает выплавку большей часта мирового производства стали.

Первоначально предполагалось выплавлять в кислородных конвертерах рядовые углеродистые стали, в основном низкоуглеродистые для производства тонкого листа. Теперь этим способом выплавляют высокоуглеродистые и легированные стали, не уступающие мартеновской соответствующих марок. Он развивается такими прогрессирующими темпами, которых не знала сталепла­вильная промышленность.

Увеличение производства стали будет происходить и дальше благодаря строительству новых мощных кислородно-конвертер­ных и электросталеплавильных цехов при полном прекращении строительства мартеновских печей.

Такое изменение структуры сталеплавильного производства диктуется значительными технико-экономическими преимуще­ствами кислородно-конвертерного способа выплавки стали по сравнению с мартеновским: более высокая производительность на единицу выплавляемой стали, меньшие капитальные затраты, более благоприятные условия для механизации и автоматизации производственных процессов и совмещения процесса выплавки стали с ее непрерывной разливкой.

Развитие конвертерного способа производства стали идет по пути увеличения единичной вместимости конвертеров с одновре­менным повышением интенсификации работы и расширением сор­тамента выплавляемой стали.

Производительность большегрузного кислородного конвертера в несколько раз превышает производительность самых мощных мартеновских печей; например, производительность одного кон­вертера вместимостью 400 т превышает производительность 600-т мартеновской печи в 8—10 раз. Современный конвертерный цех с тремя-четырьмя конвертерами вместимостью по 400 т каждый, два-три из которых работают непрерывно, при автоматизации и механизации производства может выдавать плавки с циклом 35—40 мин, что соответствует производительности 12—20 млн. т в год.

При создании мощных кислородно-конвертерных цехов важно выбрать оптимальную вместимость агрегата, что решается техни­ко-экономическими расчетами. С увеличением вместимости кон­вертеров показатели работы цеха улучшаются, что видно из сле­дующих данных.