Смекни!
smekni.com

Теоремы Генки механика деформируемого твердого тела (стр. 1 из 5)

Содержание.

Введение………………………………………………………………… 3

1. Основные уравнения………………………………………………. 4

1.1. Общие положения……………………………………………… 4

1.2. Основные уравнения………………………………………….. 4

1.3. Линии скольжения……………………………………………. 6

1.4. Состояние текучести…………………………………………. 7

1.5. Полуобратный метод………………………………………… 8

2. Линии скольжения, их свойства………………………………… 9

2.1. Характеристические линии………………………………… 9

2.2. Свойства линий скольжения………………………………. 13

Введение.

Первые работы по математической теории пластичности относятся к семидесяти годам XIX века и связаны с именами Сен-Венана, рассмотревшего уравнения плоской деформации, и М. Леви, составившего, следуя идеям Сен-Венана, уравнения в трехмерном случае; ему же принадлежит способ линеаризации уравнений плоской задачи.

В последующие годы развитие теории пластичности протекало вяло. Некоторое оживление наступило в начале XX века, когда были опубликованы работы Хаара и Кармана (1909 г.) и Р. Мизеса (1913 г.). В первой из них сделана попытка получить уравнения теории пластичности исходя из некоторого вариационного принципа. В работе Мизеса четко сформулировано новое условие текучести (условие постоянства интенсивности касательных напряжений).

Начиная с двадцатых годов, теория пластичности интенсивно развивается, вначале – преимущественно в Германии. В работах Г. Генки, Л. Прандтля, Р. Мизеса и других авторов были получены важные результаты как по основным уравнениям теории пластичности, так и по методам решения плоской задачи. К этому времени относятся и первые систематические экспериментальные исследования законов пластической деформации при сложном напряженном состоянии, а также первые успешные приложения теории пластичности к техническим вопросам. Уже с тридцатых годов теория пластичности привлекает внимание широкого круга ученых и инженеров; развертываются интенсивные теоретические и экспериментальные исследования во многих странах. Теория пластичности наряду с газовой динамикой становится наиболее энергично развивающимся разделом механики сплошных тел.

1. Основные уравнения.

1.1. Общие положения. При плоской деформации перемещения частиц тела параллельны плоскости

и не зависят от
:

. (1)

Подобное состояние возникает в длинных призматических телах при нагрузках, нормальных к боковой поверхности и не зависящих от

.

Как обычно, считаем тело изотропным и однородным. В любом сечении

будет одна и та же картина напряженного и деформированного состояний; компоненты напряжения зависят только от
, причем
равны нулю из-за отсутствия соответствующих сдвигов. Таким образом,
является одним из главных напряжений.

В теории упругости приведенные условия достаточны для формулировки проблемы плоской деформации. В теории пластичности необходимы дополнительные упрощения, так как иначе невозможно получить приемлемую математическую формулировку вопроса.

В дальнейшем используется схема жесткопластического тела. Эта концепция вносит погрешность, которую трудно оценить. Однако сколько-нибудь последовательный анализ плоской задачи затруднителен, если отказаться от схемы жесткопластического тела.

Гораздо целесообразнее исходить из схемы жесткопластического тела, которая позволяет одновременно рассматривать поле напряжений и поле смещений, связывая последнее со смещениями жестких областей. Тем самым строится в известном смысле и приближенное решение упругопластических задач.

1.2. Основные уравнения. Из (1) вытекает, что

. Вследствие пренебрежения упругими деформациями

, (2)

откуда

. (3)

Как уже отмечалось,

является одним из главных напряжений. Остальные главные напряжения
являются корнями квадратного уравнения

.

Отсюда

. (4)

Очевидно, что

- среднее главное напряжение, тогда максимальное касательное напряжение будет

.

Интенсивность касательных напряжений также равна

. (5)

Таким образом, главные напряжения равны

,

т. е. напряженное состояние в каждой точке характеризуется наложением гидростатического давления

на напряжение чистого сдвига
(рис. 1).

Рис. 1. Значения косинусов, определяющих первое (пусть

) главное направление, находятся из системы

Исключая

, получаем:

. (6)

Направления площадок, на которых действуют максимальные касательные напряжения, составляют угол

с главным направлением.

1.3. Линии скольжения. Линия скольжения – линия, в каждой точке своей касающаяся площадки максимального касательного напряжения. Очевидно, что имеются два ортогональных семейства линий скольжения, характеризуемые уравнениями:

,
,

где
- некоторые параметры. Линии первого семейства (
-линии) соответствуют фиксированным значениям параметра
; вдоль
– линии постоянен параметр
. Линия
отклоняется вправо от первого главного направления на 450 (рис. 2); линия
отклоняется влево от первого главного направления на тот же угол.

Рис. 2.

Условимся фиксировать направления линий

так, чтобы они образовывали правую систему координат; при этом касательное напряжение
положительно (рис. 2). Угол наклона касательной к линии
, отсчитываемый в положительном направлении от оси
, обозначим через
.

Дифференциальные уравнения семейств

соответственно будут

. (7)

Линии скольжения покрывают область ортогональной сеткой. Бесконечно малый элемент, выделенный линиями скольжения, испытывает одинаковое растяжение в направлениях линий скольжения (рис. 3).

Рис. 3.

1.4. Состояние текучести. Пусть среда находится в состоянии идеальной пластичности. Тогда должно выполняться условие текучести