Смекни!
smekni.com

Экономико-математически модели управления запасами (стр. 4 из 6)


пропорциональны средней величине запаса I1 = q/2 и длине цикла r = q/v,

Разделив это выражение на длину цикла, получим издержки в единицу времени

Оптимальный размер партии определяется из уравнения

(необходимый признак экстремума). Отсюда находим оптимальный размер q* партии:

Так как d2L/dq2 >0 (достаточный признак экстремума), то для всех q>0 выражение (2.2) является минимумом функции затрат (2.1). Уравнение (2.2) известно под многими названиями. Его называют формулой наиболее экономной величины заказа, формулой Уилсона, формулой квадратного корня. Чтобы найти оптимальные параметры работы системы, поставляем значение q* в соответствующие выражение. Получаем, что оптимальная стратегия предусматривает заказ q* через каждые

единиц времени. Наименьшие суммарные затраты работы системы в единицу времени

Пример 1.

Жидкие продукты нескольких видов разливаются в пакеты на одной линии упаковки. Затраты на подготовительно-заключительные операции составляют 700 ден. ед., потребность в продуктах составляет 140000 л в месяц, стоимость хранения 1 л в течение месяца – 4 ден. ед. Определить оптимальные параметры системы. Сравнить минимальные затраты с затратами при действующей системе разлива одного продукта в течение трех дней.


Решение. Оптимальные параметры модели Уилсона:

При действующей системе rд = 3 (дня) = 0,1 (месяца), qд = rд v = 14000 (литров). Величину затрат при действующей системе найдем по формуле (2.1):



2.2. Модель с конечной интенсивностью поступления заказа.

Пусть заказанная партия поступает с интенсивностью u единиц в единицу времени. Очевидно система может работать без дефицита, если интенсивность поставок u превосходит интенсивность потребления v. Таким образом рассматривается система типа заводского склада, куда продукция, произведенная одним цехом, поступает с определенной интенсивностью и используется в производстве другого цеха. Изменение уровня запаса для рассматриваемого случая изображено на рис. 2.2. В течение времени r1 запас одновременно и поступает и расходуется, это время накопления запаса. В течение r2 запас только расходуется. Длина цикла r = r1 + r2 . Учитывая, что максимальный наличный запас Iм = q(1-v/u) издержки системы в единицу времени составят
Рис. 2.2

Оптимальные параметры работы системы определяются обычным образом. Величины оптимальной партии


оптимальный период возобновления заказа

и его составляющие

минимальные издержки в единицу времени



В случае, когда интенсивность поставки значительно больше интенсивности потребления v/u 0, а (2.3), (2.4), (2.5) становятся параметрами обычной системы Уилсона.

2.3. Модель с учетом неудовлетворенных требований.


В некоторых случаях, когда потери из-за дефицита сравнимы с издержками хранения, дефицит допускается. Пусть требования, поступающие в момент отсутствия запаса, берутся на учет. Обозначим через y максимальную величину задолженного спроса рис. 2.3. Максимальная величина наличного запаса Y = q-y расходуется за время r1 (время существования наличного запаса), а затем поступающие требования ставятся на учет в течение времени r2 (время дефицита). При поступлении очередной партии в первую очередь удовлетворяется задолженый спрос, а затем пополняется запас. Убытки, связанные с дефицитом единицы запаса в единицу времени, составляют d. Затраты на хранение продукции пропорциональны средней величине запаса (q-y)/2 и времени его существования (q-y)/v; аналогично убытки от дефицита пропорциональны средней величине дефицита y/2 и времени его существования y/v. Средние издержки работы системы в течение цикла, включающие затраты на размещение заказа, содержание запаса и потери от дефицита



Разделим издержки цикла на его величину r = q/v и получим издержки работы системы в единицу времени

Откуда обычным способом находим




Подставив значения q* и y* в соответствующие выражения, найдем другие оптимальные параметры системы

В более сложных моделях управления запасами сохраняется общий подход: строится функция затрат на приобретение запаса, строится функция потерь при хранении запаса и при его нехватке, находится уравнение запасами, при котором минимизируются затраты и потери.

Возможно также решение задач управления запасами, в которых на переменные величины накладываются определенные ограничения. В качестве примера рассмотрим задачу оптимизации режима производства и хранения, которая относится к комбинированным задачам: задачам составления календарных расписаний и задачам управления запасами.

Задача выравнивания графика производства при неравномерной потребности в производимой продукции возникает на многих предприятиях. Для расчета графика производства решается следующая задача. Известна потребность в деталях определенного вида - at, где t=1,2,…, T – планируемый отрезок времени. Выпуск деталей за этот отрезок времени xt является искомой величиной. Неизвестен и запас изготовленных деталей на конец отрезка времени t-st. Известен лишь начальный запас s0 . Очевидно, что запас на начало t-го периода st-1 вместе с производством за этот период xt должен быть равным потребности at, плюс запас на конец периода st, т. е. xt+ st-1- st= at.