МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ВОСТОЧНО-СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ
ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ
Реферат на тему: «Решение нелинейных уравнений
методом простых итераций»
Выполнил:. Бубеев Б.М.
Проверил: Ширапов Д.Ш.
Улан-Удэ
2011 г.
Введение
Нелинейные уравнения можно разделить на 2 класса - алгебраические и трансцендентные. Алгебраическими уравнениями называют уравнения, содержащие только алгебраические функции (целые, рациональные, иррациональные). В частности, многочлен является целой алгебраической функцией. Уравнения, содержащие другие функции (тригонометрические, показательные, логарифмические и другие) называются трансцендентными.
Методы решения нелинейных уравнений делятся на две группы:
1. точные методы;
2. итерационные методы.
Точные методы позволяют записать корни в виде некоторого конечного соотношения (формулы). Из школьного курса алгебры известны такие методы для решения тригонометрических, логарифмических, показательных, а также простейших алгебраических уравнений.
Как известно, многие уравнения и системы уравнений не имеют аналитических решений. В первую очередь это относится к большинству трансцендентных уравнений. Доказано также, что нельзя построить формулу, по которой можно было бы решить произвольное алгебраическое уравнение степени выше четвертой. Кроме того, в некоторых случаях уравнение содержит коэффициенты, известные лишь приблизительно, и, следовательно, сама задача о точном определении корней уравнения теряет смысл. Для их решения используются итерационные методы с заданной степенью точности.
Пусть дано уравнение
(1) |
где:
1. Функция f(x) непрерывна на отрезке [a, b] вместе со своими производными 1-го и 2-го порядка.
2. Значения f(x) на концах отрезка имеют разные знаки (f(a) * f(b) < 0).
3. Первая и вторая производные f' (x) и f'' (x) сохраняют определенный знак на всем отрезке.
Условия 1) и 2) гарантируют, что на интервале [a, b] находится хотя бы один корень, а из 3) следует, что f(x) на данном интервале монотонна и поэтому корень будет единственным.
Решить уравнение (1) итерационным методом значит установить, имеет ли оно корни, сколько корней и найти значения корней с нужной точностью.
Всякое значение
, обращающее функцию f(x) в нуль, т.е. такое, что:называется корнем уравнения (1) или нулем функции f(x).
Задача нахождения корня уравнения f(x) = 0 итерационным методом состоит из двух этапов:
1. отделение корней - отыскание приближенного значения корня или содержащего его отрезка;
2. уточнение приближенных корней - доведение их до заданной степени точности.
Процесс отделения корней начинается с установления знаков функции f(x) в граничных x = a и x = b точках области ее существования.
Пример 1. Отделить корни уравнения:
f(x) º x3 - 6х + 2 = 0. | (2) |
Составим приблизительную схему:
x | -¥ | -3 | -1 | 0 | 1 | 3 | +¥ |
f(x) | - | - | + | + | - | + | + |
Следовательно, уравнение (2) имеет три действительных корня, лежащих в интервалах [-3, -1], [0, 1] и [1, 3].
Приближенные значения корней (начальные приближения) могут быть также известны из физического смысла задачи, из решения аналогичной задачи при других исходных данных, или могут быть найдены графическим способом.
В инженерной практике распространен графический способ определения приближенных корней.
Принимая во внимание, что действительные корни уравнения (1) - это точки пересечения графика функции f(x) с осью абсцисс, достаточно построить график функции f(x) и отметить точки пересечения f(x) с осью Ох, или отметить на оси Ох отрезки, содержащие по одному корню. Построение графиков часто удается сильно упростить, заменив уравнение (1) равносильным ему уравнением:
, | (3) |
где функции f1(x) и f2(x) - более простые, чем функция f(x). Тогда, построив графики функций у = f1(x) и у = f2(x), искомые корни получим как абсциссы точек пересечения этих графиков.
Рисунок 2.
Пример 2. Графически отделить корни уравнения (Рисунок 2):
x lg x = 1. | (4) |
Уравнение (4) удобно переписать в виде равенства:
lg x= .
Отсюда ясно, что корни уравнения (4) могут быть найдены как абсциссы точек пересечения логарифмической кривой y = lg x и гиперболы y = . Построив эти кривые, приближенно найдем единственный корень
уравнения (4) или определим его содержащий отрезок [2, 3].Итерационный процесс состоит в последовательном уточнении начального приближения х0. Каждый такой шаг называется итерацией. В результате итераций находится последовательность приближенных значений корня х1, х2, ..., хn. Если эти значения с увеличением числа итераций n приближаются к истинному значению корня, то говорят, что итерационный процесс сходится.
Для использования метода итерации исходное нелинейное уравнение f(х) = 0 заменяется равносильным уравнением
x = j(x). | (8) |
Пусть известно начальное приближение корня х = х0. Подставляя это значение в правую часть уравнения (8), получим новое приближение:
х1 = j(х0). |
Далее, подставляя каждый раз новое значение корня в (8), получаем последовательность значений:
(9) |
Геометрически метод итерации может быть пояснен следующим образом. Построим на плоскости хОу графики функций у = х и у = j (х). Каждый действительный корень
уравнения (8) является абсциссой точки пересечения М кривой у = j (х) с прямой у = х (Рисунок 6, а).Рисунок 6.
Отправляясь от некоторой точки А0 [x0, j (x0)], строим ломаную А0В1А1В2А2... (“лестница”), звенья которой попеременно параллельны оси Ох и оси Оу, вершины А0, А1, А2, ...лежат на кривой у=j (х), а вершины В1, В2, В3, …, - на прямой у = х. Общие абсциссы точек А1 и В1, А2 и В2, ..., очевидно, представляют собой соответственно последовательные приближения х1, х2, ... корня
.Возможен также другой вид ломаной А0В1А1В2А2 ... - “спираль” (Рисунок 6, б). Решение в виде “лестницы” получается, если производная j' (х) положительна, а решение в виде “спирали”, если j' (х) отрицательна.
На Рисунке 6, а, б кривая у = j (х) в окрестности корня
- пологая, то есть <1, и процесс итерации сходится. Однако, если рассмотреть случай, где >1, то процесс итерации может быть расходящимся (Рисунок 7).Рисунок 7.
Поэтому для практического применения метода итерации нужно выяснить достаточные условия сходимости итерационного процесса.