Введение
Теория вероятностей – это математическая наука, изучающая закономерности в случайных явлениях. На сегодняшний день это полноценная наука, имеющая большое практическое значение.
История теории вероятности восходит к XVII веку, когда были предприняты первые попытки систематического исследования задач, относящихся к массовым случайным явлениям, и появился соответствующий математический аппарат. С тех пор, многие основы были разработаны и углублены до нынешних понятий, были открыты другие важные законы и закономерности. Множество ученых работало и работает над проблемами теории вероятностей.
Среди них нельзя не обратить внимание на труды Симеона Дени Пуассона ((1781–1840) – французский математик), доказавшего более общую, чем у Якова Бернулли, форму закона больших чисел, а также впервые применившего теорию вероятностей к задачам стрельбы. С именем Пуассона связан один из законов распределения, играющий большую роль в теории вероятностей и ее приложениях.
Число наступлений определённого случайного события за единицу времени, когда факт наступления этого события в данном эксперименте не зависят от того, сколько раз и в какие моменты времени оно осуществлялось в прошлом, и не влияет на будущее. А испытания производятся в стационарных условиях, то для описания распределения такой случайной величины обычно используют закон Пуассона (данное распределение впервые предложено и опубликовано этим учёным в 1837 г.).
Этот закон можно также описывать как предельный случай биноминального распределения, когда вероятность p осуществления интересующего нас события в единичном эксперименте очень мала, но число экспериментов m, производимых в единицу времени, достаточно велико, а именно такое, что в процессе p
0 и m произведение mp стремится к некоторой положительной постоянной величине (т.е. mp ).Поэтому закон Пуассона часто называют также законом редких событий.
Распределение Пуассона в теории вероятностей
Функция и ряд распределения
Распределение Пуассона – это частный случай биномиального распределения (при n >> 0 и при p –> 0 (редкие события)).
Из математики известна формула, позволяющая примерно подсчитать значение любого члена биномиального распределения:
где a = n · p – параметр Пуассона (математическое ожидание), а дисперсия равна математическому ожиданию. Приведем математические выкладки, поясняющие этот переход. Биномиальный закон распределения
Pm = Cnm · pm · (1 – p)n – m
может быть написан, если положить p = a/n, в виде
или
Так как p очень мало, то следует принимать во внимание только числа m, малые по сравнению с n. Произведение
весьма близко к единице. Это же относится к величине
очень близка к e–a. Отсюда получаем формулу:
число Эйлера (2,71…). ,Для производящей функции
величины имеем:Интегральная функция вероятности распределения равна
Классическим примером случайной величины, распределенной по Пуассону, является количество машин, проезжающих через какой-либо участок дороги за заданный период времен. Также можно отметить такие примеры, как количество звезд на участке неба заданной величины, количество ошибок в тексте заданной длины, количество телефонных звонков в call-центре или количество обращений к веб-серверу за заданный период времени.
Ряд распределения случайной величины Х, распределенной по закону Пуассона, выглядит следующим образом:
хm | 0 | 1 | 2 | … | m | … |
Pm | e-a | … | … |
На рис. 1 представлены многоугольники распределения случайной величины Х по закону Пуассона, соответствующие различным значениям параметра а.
Для начала убедимся, что последовательность вероятностей, может представлять собой ряд распределения, т.е. что сумма всех вероятностей Рm равна единице.
Используем разложение функции ех в ряд Маклорена:
Известно, что этот ряд сходится при любом значении х, поэтому, взяв х=а, получим
следовательно
Числовые характеристики положения о распределении Пуассона
Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.
По определению, когда дискретная случайная величина принимает счетное множество значений:
Первый член суммы (соответствующий m=0) равен нулю, следовательно, суммирование можно начинать с m=1:
Таким образом, параметр а представляет собой не что иное, как математическое ожидание случайной величины Х.
Кроме математического ожидания, положение случайной величины характеризуется модой и медианой.
Модой случайной величины называется её наиболее вероятное значение.
Для непрерывной величины модой называется точкой локального максимума функции плотности распределения вероятностей. Если многоугольник или кривая распределения имеют один максимум (рис. 2 а), то распределение называется унимодальным, при наличии более одного максимума – мультимодальным (в частности, распределение, имеющее две моды, называется бимодальным). Распределение, имеющее минимум, называется антимодальным (рис. 2 б)
F(x) Pi
xmod x 0 x1 x2 x3 x4 x
Наивероятнейшим значением случайной величины называется мода, доставляющая глобальный максимум вероятности для дискретной случайной величины или плотности распределения для непрерывной случайной величины.
Медиана – это такое значение хl, которое делит площадь под графиком плотности вероятности пополам, т.е. медиана является любым корнем уравнения. Математическое ожидание может не существовать, а медиана существует всегда и может быть неоднозначно определенной.
Медианой случайной величины
называется такое её значение = x med, что P ( < x med) = Р ( > x med) = .Числовые характеристики разброса
Дисперсией случайной величины Х называют математической ожидание квадрата отклонения случайной величины от ее математического ожидания:
Однако, удобнее ее вычислять по формуле:
Поэтому найдем сначала второй начальный момент величины Х:
По ранее доказанному
кроме того,