аналогично. ■
Теорема 2.4 (Дирихле) Пусть функции f, g:
и интегрируемы по Римануна [а; А] при любом А > а. Тогда
сходится, если выполнены следующиедва условия:
1)
ограничен на [а; +∞);2) функция g(x) монотонно стремится к нулю при
Доказательство. По первому условию существует постоянная М такая,
что
. По второму условию такое, что при А > будет выполняться неравенство . По второму же условию функцию g(x) можно считать неотрицательной. Возьмём и применим к интегралу вторую теорему о среднем значении (формулу Боннэ), согласно которой найдётся такое, чтоНо тогда, поскольку
справедлива оценка
для любых А’, А” >
. По критерию Коши интеграл сходится. ■Теорема 2.5 (Абель) Пусть функции f, g : [а; +∞)→R и интегрируемы по Риману на [а; А] при любом А > а. Тогда
сходится, если выполнены следующие два условия:1)
сходится;2) функция g(x) монотонна и ограничена на [а; +∞).
Доказательство. В силу второго условия существует
.Тогда
Первый из интегралов справа сходится по признаку Дирихле, поскольку
монотонно стремится к нулю при х→+∞, а второй сходится в силу условия 1 доказываемой теоремы. ■Замечание 2.2 При доказательстве теоремы Абеля было использовано очевидное свойство
несобственных интегралов: если сходятся интегралы
и , то сходится и , при этом= +
Пример 2.3 Вернемся к рассмотренным выше примерам
Решение. По признаку Дирихле эти интегралы сходятся при р > 0, поскольку при этом условии дробь
↓ 0, а интегралы очевидно, ограничены. ■Пример 2.4 Рассмотрим
Решение. Этот интеграл сходится по признаку Абеля. Действительно,
сходимость интеграла
установлена в предыдущем примере, афункция arctg х монотонна и ограничена. ■
Несобственные интегралы второго рода
Пусть функция f : (а; b] →R, неограниченна в окрестности точки а, но интегрируема по Риману на [а + δ, b] при любом 0<δ<b-a.
Формальное выражение
назовём несобственным интегралом второго рода.
Определение 2.4 Несобственный интеграл второго рода назовём сходящимся, если существует
В этом случае будем говорить, что число I являемся значением интеграла и писать
Если же указанный предел равен бесконечности или вовсе не существует, то будем говорить, что интеграл расходится.
Аналогично определяется
если функция f определена на [а; b), интегрируема на [а; b-ξ] при любом 0<δ<b-a и неограниченна в окрестности точки b.
Если же функция f определена на [а; b]\{c}, а < с < b, неограниченна в окрестности точки с, но интегрируема на отрезках [а; с-δ] и [с-δ; b] при любом допустимом положительном δ, то определим
Пример 2.5
сходится при р<1 и расходится при р .Теорема 2.6 (критерий Коши) Если функция f: (a; b]→R, неограниченна в окрестности точки а, но интегрируема по Риману на [а + δ, b]
при любом О<δ<δ-a, то
сходится тогда и только тогда, когда такое, что а’, а” : а <а’, а” < а + δ. Будет выполняться условиеЭто утверждение доказывается так же, как и аналогичное утверждение
для несобственных интегралов первого рода. Так же вводится понятие
абсолютной и условной сходимости и устанавливается соотношение между ними. Так же формулируется и доказывается признак сходимости Вейерштрасса.
Интегралы в смысле главного значения
Определение 2.5 Пусть функция f: R→ R, интегрируема по Риману на любом конечном отрезке, но несобственный интеграл
не существует. Тогда, если существует , мо он называется интегралом в смысле главного значения и обозначается символом
( p.)
Определение 2.6 Пусть функция f: [а;b ]\{с} → R, а <с < b, неограниченна в окрестности точки с, интегрируема по Риману на отрезках
[а; с — δ] и [с + δ; b] при любом δ> 0, но не существует. Тогда, если существует
то он называется интегралом в смысле главного значения н обозначаемся символом
( p.)
Пример 2.6 Рассмотрим
Решение. Это — расходящийся интеграл второго рода, поскольку показатель степени p =1. Однако
Следовательно, рассматриваемый интеграл существует в смысле главного значения и
(
p.) ■Пример 2.7 Рассмотрим
Решение. Этот интеграл расходится, так как подынтегральная функция f(х)~
. НоСледовательно, этот интеграл существует в смысле главного значения и ( p.) ■