1)
2)функция у(х, у) монотонно по х при каждом у и равномерно по у
стремимся к нулю при х→+∞.
Доказательство. Доказательство этой теоремы такое же, как и доказательство теоремы 2.4, нужно лишь проследить, чтобы все оценки выполнялись равномерно по параметру.
По первому условию существует постоянная М такая, что для всех
A> а и у имеет место оценка:
По второму условию для любого
для любых А>
Возьмём
Оценим (2.18) с помощью (2.16) и (2.17).
для любого у из множества Y.
Используя критерий Коши, получаем требуемое утверждение. ■
Теорема 2.15 (Абель) Пусть функции f, g : [а; +∞) х Y→R и
интегрируемы по Риману на [а; А] при любых А > а и у . Тогда
1)
2)функция g(х, у) монотонна по х при каждом у и равномерно
по у ограничена, то есть, существует постоянная М такая, что
Пример 2.12 Рассмотрим
Решение. Положим f(x,a)= sinax, g(x,a)
при х → +∞, и это условие (ввиду независимости функции g от а) вы-
полнено равномерно по а.
Так как оба условия признака Дирихле выполнены, то рассматриваемый интеграл сходится равномерно в указанной области. ■
Пример 2.13 Рассмотрим
Решение. Положим f(x, а) =
сходится равномерно по а (ввиду его отсутствия) по признаку Дирихле,
а функция
то рассматриваемый интеграл сходится равномерно в указанной области
по признаку Абеля.■
2.4 Свойства несобственных интегралов, зависящих
от параметра
Изучим свойства несобственных интегралов первого рода, зависящих
от параметра, ограничившись простейшим случаем: множество Y есть
отрезок [с; d] вещественной оси. Введём обозначение
и докажем предварительно следующую лемму.
Лемма 2.1 Если интеграл (2.13) сходится равномерно на множестве Y
то последовательность функций
тоже равномерно сходится на множестве Y к функции I(y).
Теорема 2.16 Если функция f(x, у) определена и непрерывна на П
а интеграл (2.13) сходится равномерно на отрезке [с; d], мо функция
I(у), определяемая этим интегралом, непрерывна на [с; d].
Доказательство. По теореме 2.7 функции I
сходится равномерно на отрезке [с; d] к функции ‚I(у). Но тогда по теореме о пределе равномерно сходящейся последовательности непрерывных
функций функция I(у) непрерывна на отрезке [с; d]. ■
Следующая теорема является в некотором роде обратной к предыдущей.
Теорема 2.17 (Дини) Если функция f(x, у) непрерывна и неотрицательна П
отрезке [с; d].
Доказательство. По теореме 2.7 функции I
непрерывны на отрезке [с; d]. Так как функция f(x, у) неотрицательна,
то последовательность функций I
Но тогда, поскольку предельная функция ‚I(у) этой последовательности тоже непрерывна, к ней можно применить теорему Дини для последовательностей, согласно которой последовательность I
функции I(у) равномерно на отрезке [с; d]. Последнее означает, что для
любого
справедливо неравенство
Положим
и равномерная сходимость интеграла доказана. ■
Теорема 2.18 Если функция f(x, у) определена и непрерывна на
а интеграл (2.13) сходится равномерно на отрезке [с; d], то функция
I(у), определяемая этим интегралом, интегрируема на [с; d] и справедливо равенство
Доказательство. Снова рассмотрим последовательность I