По формулам (3.34) и (3.35) или (3.36) вычислим оценки параметров функции регрессии
Для упрощение расчетов и их наглядности составляют рабочую таблицу, которая содержит все исходные данные и промежуточные результаты, необходимые для вычисления оценок параметров (см. прил 1). В таблице приведены значения
Итак, по формулам(3.34) и (3.36) вычисляем
Оцениваемое соотношение можно записать в виде
Оцениваемое соотношение можно записать в виде
Подставляя в полученное уравнение значения
СМ. ПРИЛОЖЕНИЕ 3. Диаграмма рассеяния, отражающая зависимость производства от среднего процента выполнения норм..
По формулам (3.34) и (3.35) или (3.36) вычислим оценки параметров функции регрессии
Оцениваемое соотношение можно записать в виде
Подставляя в полученное уравнение значения
В) Исследование регрессивной модели.
1.
Коэффициент регрессии b11 показывает, что объём производства в среднем возрастает на 2,1622*10000 = 21622 руб, если капиталовложения увеличатся на 1000 рублей.
После определения значений
Для оценки тесноты связи между исследуемыми явлениями вычислим коэффициент корреляции по формуле (3.15)(необходимые промежуточные результаты заимствуем из табл.приложение1)
Чем больше
Получен очень высокий коэффициент корреляции. Это свидетельствует о том, что связь между объёмом производства и уровнем капиталовложения очень тесная, хотя и не функциональная. Очевидно, что к действию объясняющей переменной примешивается влияние побочных факторов. Чем меньше это влияние и ограниченнее воздействие случайностей, тем ближе коэффициент корреляции к ±1. Отсюда видна связь между величиной и регрессией Функция линейной регрессии отражает линейное соотношение между переменными тем лучше, чем больше коэффициент корреляции приближается к ±1. В этом смысле коэффициент корреляции часто служит критерием при выборе вида регрессии. С его помощью устанавливают, действительно ли переменная
зависит от
и в какой степени.
Содержание этого этапа заключается в статистической проверке значимости (надежности): уравнения регрессии, коэффициентов регрессии и корреляции.
1. Значимость уравнения регрессии определяется возможностью надежно прогнозировать среднее отклика по заданным значениям факторной переменной. Так как
Для оценки надёжности выборочного уравнения регрессии применяется
где
Для оценки надежности выборочного уравнения регрессии воспользуемся формулой (3.37)
По статистическим таблицам распределения Фишера (приложение 4) на
Так как
Для оценки надёжности парного коэффициента корреляции
По таблице распределения Стьюдента (приложение 5) на
Так как
Вычислим теперь коэффициент детерминации (квадрат смешанной корреляции)