или
Итак, с вероятностью 0,52 можно утверждать, что неизвестное знамение параметра регрессии
При построении доверительного интервала для коэффициента корреляции генеральной совокупности
Подставляя выборочный коэффициент корреляции
Стандартную ошибку
Доверительные границы для величины
При уровне значимости
или
и доверительный интервал для
Доверительные границы для коэффициента корреляции
Итак, с вероятностью 0,5% можно утверждать, что коэффициент корреляции в генеральной совокупности содержится в интервале
Г) Построим уравнение регрессии и выполнить исследование множественной модели в полном объеме (см.п.3.2).
Будем искать зависимость объёма производства, капиталовложениями и выполнением норм выработки в виде линейной множественной регрессии.
Объясняющие переменные Х1и Х2 оказывают совместное одновременное влияние на зависимую переменную У.
Приведем формулы для вычисления
Используя промежуточные результаты из табл. 3.4 и 3.7, по формулам (3.56), (3.57) и (3.58) вычисляем коэффициенты регрессии:
Итак, в соответствии с (3.55) уравнение регрессии запишем в виде
Подставляя в это уравнение значения
Таким образом, если рассматривать зависимость Объёма производства от капиталовложений и от среднего процента выполнения норм, то объем производства в среднем изменится на 1,7209*10000 рублей при условии, что капиталовложения изменится на 1000 рублей при исключении влияния среднего процента выполнения норм. Если исключить влияние капиталовложений, то обьем производства в среднем изменится на 4,3389 *10000 рублей при изменении среднего процента выполнения норм на один процент.
Обратим внимание, что по сравнению с коэффициентом регрессии в уравнении с одной объясняющей переменной данный коэффициент регрессии
Коэффициенты регрессии отражают зависимость объёма производства от соответствующей переменной при исключении влияния на зависимую переменную двух других объясняющих переменных.
Стандартизированные коэффициенты регрессий
где
По формуле (3.61) вычислим стандартизированные коэффициенты регрессии
Уравнение множественной регрессии в стандартизированном масштабе примет вид
где
Для вычисления множественного коэффициента корреляции можно воспользоваться и другой формулой, если вспомнить, что он непосредственно связан с коэффициентом детерминации
Получен очень высокий коэффициент корреляции. Это свидетельствует о том, что зависимость объема производства от капиталовложений и среднего процента выполнения норм очень высокая..
Оценим значимость уравнений регрессии
Значимость уравнения регрессии определяется возможностью надежно прогнозировать среднее отклика по заданным значениям факторной переменной. Так как
Для оценки надёжности выборочного уравнения регрессии применяется
Уравнение регрессии считается значимым (т.е., выделенные факторные переменные "хорошо", "надёжно" описывают исследуемую зависимость, если значение