Вероятность (вероятностная мера) — мера достоверности случайного события. Оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента. Согласно определению П. Лапласа мерой вероятности называется дробь, числитель которой есть число всех благоприятных случаев, а знаменатель - число всех возможных случаев.
Вероятность - мера, заданная на измеримом пространстве (Ω, X):
1.
2.
3. обладает свойством сигма-аддитивности (счетной аддитивности)
Математически классическая (т.е. неквантовая) вероятность задаётся аксиоматикой Колмогорова как мера на вероятностном пространстве, причём мера всего пространства равна единице. При этом случайные события определяются как измеримые подмножества этого пространства
Вероятностное пространство — это тройка
[править] Замечания
Простым и часто используемым примером вероятностного пространства является конечное пространство. Пусть
В качестве сигма-алгебры удобно взять семейство всех подмножеств
Вероятность, вообще говоря, можно определять произвольно. Часто, однако, нет причин считать, что один элементарный исход чем-либо предпочтительнее другого. Тогда естественным способом ввести вероятность является:
где
В частности, вероятность любого элементарного события:
Рассмотрим эксперимент с бросанием уравновешенной монеты. Тогда естественным способом задать вероятностное пространство будет взять
Пусть
Вероятностное поведение случайной величины полностью описывается её распределением.
Случайная величина, вообще говоря, может принимать значения в любом измеримом пространстве. Тогда её чаще называют случайным вектором или случайным элементом. Например,
При рассмотрении количества m появлений события A в n испытаниях Бернулли чаще всего нужно найти вероятность того, что m заключено между некоторыми значениями a и b. Так как при достаточно больших n промежуток [a,b] содержит большое число единиц, то непосредственное использование биномиального распределения
требует громоздких вычислений, так как нужно суммировать большое число определённых по этой формуле вероятностей.
Поэтому используют асимптотическое выражение для биномиального распределения при условии, что p фиксированно, а
Если в схеме Бернулли n стремится к бесконечности, p (0 < p < 1) постоянно, величина
где
Приближённую формулу
рекомендуется применять при n > 100 и npq > 20.
При рассмотрении количества m появлений события A в n испытаниях Бернулли чаще всего нужно найти вероятность того, что m заключено между некоторыми значениями a и b. Так как при достаточно больших n промежуток [a,b] содержит большое число единиц, то непосредственное использование биномиального распределения
требует громоздких вычислений, так как нужно суммировать большое число определённых по этой формуле вероятностей.
Поэтому используют асимптотическое выражение для биномиального распределения при условии, что p фиксированно, а
Если в схеме Бернулли n стремится к бесконечности, p (0 < p < 1) постоянно, величина
где
Приближённую формулу
рекомендуется применять при n > 100 и npq > 20.
Пусть дано вероятностное пространство