Дальнейшее доказательство следует из факта совпадения отображений
и за период для двух рассматриваемых систем.Теорема доказана.
При изучении поставленных вопросов важную роль играет отображение за период (отображение Пуанкаре), для отыскание которого используют вспомогательные функции, названные отображающими функциями.
Отражающей функцией названа функция, позволяющая по состоянию системы x (t) в момент времени t найти состояние этой системы x (-t) в момент времени (-t). Эта функция применена для качественного исследования неавтономных систем и, в частности, для решения вопросов существования и устойчивости периодических дифференциальных систем.
Знание отражающей функции позволяет определить отображение за период системы и, значит, найти начальные данные её периодических решений, а также проверить их на устойчивость.
Основное соотношение
позволяет найти отражающую функцию или установить её структуру. Даны необходимые и достаточные условия, того, чтобы первая компонента отражающей функции дифференциальной системы второго порядка не зависела от второй компоненты.
Частным случаем этого результата являются необходимые и достаточные условия чётности первой компоненты любого решения рассматриваемой системы. Установлен вид отражающей функции при указанном условии.
1. 1. Красносемский М.А. Оператор сдвига по траекториям дифференциальных уравнений. - М.: Наука, 1966 - 332 с.
2. 2. Мироненко В.И. Линейная зависимость функций вдоль решений дифференциальных уравнений. - Минск: Издательство БГУ имени В.И. Ленина. 1981 - 104 с.
3. 3. Мироненко В.И. Отражающая функция и периодические решения дифференциальных уравнений. -Минск, издательство "Университетское". 1981 - 76 с.
4. 4. Мироненко В.И. Отражающая функция и исследование многомерных дифференциальных систем. - Гомель:. 2004. - 196 с.
5. 5. Мироненко В.И. Возмущения дифференциальных систем, не изменяющие временных симметрий. - Дифференц. уравнения, Т.40, №10, 2004. С.1325-1332 с.
6. 6. Богданов Ю.С. Лекции по дифференциальным уравнениям. Минск, 1977. - 191 с.
7. 7. Ильин В.А., Садовничий В.А., Сендов Б.Х. Математический анализ. М., 1979 - 682 с.