Смекни!
smekni.com

Автокорреляция (стр. 2 из 4)

Рис. 2.3.1. Механизм проверки гипотезы о наличии автокорреляции остатков

Если фактическое значение критерия Дарбина – Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу H0.

Пример 2.3.1. Проверка гипотезы о наличии автокорреляции в остатках.

Исходные данные, значения

и результаты промежуточных расчетов

представлены в табл. 2.3.1.

Таблица 2.3.1. - Расчет критерия Дарбина–Уотсона для модели зависимости потребления от дохода

Фактическое значение критерия Дарбина–Уотсона для этой модели составляет d = 4,1233/1,6624 = 2,48. Сформулируем гипотезы:

Н0 – в остатках нет автокорреляции;

Н1 – в остатках есть положительная автокорреляция;

Н1* – в остатках есть отрицательная автокорреляция.

Зададим уровень значимости a = 0,05. По таблицам значений критерия Дарбина–Уотсона определим для числа наблюдений n = 7 и числа независимых переменных модели k' = 1 критические dL = 0,700 и dU = 1,356. Получим следующие промежутки внутри интервала [0;4]

Рис. 2.3.2. Промежутки внутри интервала [0; 4]

Фактическое значение d = 2,48 попадает в промежуток от

до 4 –
. Следовательно, нет оснований отклонять гипотезу H0об отсутствии автокорреляции в остатках.

Пример 2.3.2. В таблице 2.3.2. приведены данные, отражающие спрос на некоторый товар за восьмилетний период, т.е. временной ряд спроса

Таблица 2.3.2.

Выявить на уровне значимости 0,05 наличие автокорреляции в остатках для временного ряда.

Получили уравнение тренда:

В таблице 2.3.3 приведены необходимые вычисления

Таблица 2.3.3

По формуле вычислили

По таблице критических точек при n=15

,
, т.е. фактически найденное d=2.34 находится в пределах от
до 4-
(1.36<d<2.64). При n<15 критических значений d-статистики в таблице нет, но судя по тенденции их изменений с уменьшением n, можно предполагать, что найденное значение останется в интервале (
,4-
), т.е. для рассматриваемого временного ряда спроса на уровне значимости 0,005 гипотеза об отсутствии автокорреляции остатков не отвергается .

Есть несколько существенных ограничений на применение критерия Дарбина–Уотсона. Во-первых, он неприменим к моделям, включающим в качестве независимых переменных лаговые значения результативного признака, т. е. к моделям авторегрессии. Во-вторых, методика расчета и использования критерия Дарбина – Уотсона направлена только на выявление автокорреляции остатков первого порядка. При проверке остатков на автокорреляцию более высоких порядков следует применять другие методы. В-третьих, критерий Дарбина–Уотсона дает достоверные результаты только для больших выборок.

2.4. Тест серий (Бреуша-Годфри)

Тест основан на следующей идее: если имеется корреляция между соседними наблюдениями, то естественно ожидать, что в уравнении

, t =1,…,n (2.4.1)

(где

-остатки регрессии, полученные обычным методом наименьших квадратов), коэффициент
окажется значимо отличающимся от нуля.

Практическое применение теста заключается в оценивании методом наименьших квадратов регрессии (2.4.1)

Преимущество теста Бреуша–Годфри по сравнению с тестом Дарбина-Уотсона содержит зону неопределенности для значений статистики d. Другим преимуществом теста является возможность обобщения: в число регрессоров могут быть включены не только остатки с лагом 1, но и с лагом 2,3 и т.д., что позволяет выявить корреляцию не только между соседними, но и между более отдаленными наблюдениями.

Рассмотрим в качестве примера (2.4) временной ряд

- ряд последовательных значений курса ценной бумаги А, наблюдаемых в моменты времени 1,…,100. Результаты наблюдений графически изображены на рисунке 2.4.

Рис.2.4

Очевидно, курс ценной бумаги А имеет тенденцию к росту, что можно проследить на графике.

Оценивая обычным методом наименьших квадратов зависимость курса наблюдений (т.е. от времени), получим следующие результаты:

Имеет место положительная автокорреляция (т.к. результаты предыдущих торгов оказывают влияние на результаты последующих)

Проверим это с помощью теста Бреуша-Годфри.

Рассмотрим авторегрессионную зависимость остатков от их предыдущих значений, используя авторегрессионную модель р-го порядка. Применяя МНК, получим:

(2.4.2)

(0,10) (0,12) (0,10)

Как видно, значимым оказывается только регрессор

,т.е.существенное влияние на результат наблюдения
оказывает только одно предыдущее значение
. Положительность оценкисоответствующего коэффициента регрессии указывает на положительную корреляцию между ошибками регрессии
и
.

2.5.Q-тест Льюинга-Бокса

Тест основан на рассмотрении выборочных автокорреляционной и частной автокорреляционной функцией временного ряда.

Если ряд стационарный, то, как можно доказать, выборочный частный коэффициент корреляции совпадает с оценкой обычного метода наименьших квадратов коэффициента

в авторегрессионной модели AR(p):

Это утверждение лежит в основе вычисления значений частной автокорреляционной функции.

Очевидно, что в случае отсутствия автокорреляции все значения автокорреляционной функции равны нулю. Разумеется, ее выборочные значения окажутся отличными от нуля, но в этом случае отличие не должно быть существенным. На этой идее и основан тест Льюинга-Бокса, проверяющий гипотезу об отсутствии автокорреляции.

Статистика Льюинга-Бокса имеет вид:

(2.5)

Можно доказать, что если верна гипотеза

о равенстве нулю всех коэффициентов корреляции
, где
, то статистика
имеет распределение
с р степенями свободы.

Пример 2.5 Проверить гипотезу об отсутствии автокорреляции в модели зависимости курса ценной бумаги А от времени t (пример 2.4)

Значение d-статистики Дарбина-Уотсона, примерно равное единице, дает оценку коэффициента корреляции между

и
, т.е. r(1)=0,5/

Отсюда по формуле 2.5