Смекни!
smekni.com

Автокорреляция (стр. 3 из 4)

Так как фактическое значение статистики больше критического

, то гипотеза
отвергается

Заметим, что гипотеза

=0 и
о равенстве нулю коэффициента
в уравнении 2.4.1 представляют собой по сути одно и то же утверждение об отсутствии авторегрессии первого порядка. Результат тестирования этих гипотез должен совпадать с выводом, к которому приводит значение статистики Дарбина- Уотсона.

3. Последствия автокорреляции

Среди последствий автокорреляции при применении МНК обычно выделяются следующие.

1.Оценки параметров, оставаясь линейными и несмещенными, пере­стают быть эффективными. Следовательно, они перестают обла­дать свойствами наилучших линейных несмещенных оценок (ВLUE-оценок).

2.Дисперсии оценок являются смещенными. Зачастую дисперсии, вычисляемые по стандартным формулам, являются заниженными, что приводит к увеличению t-статистик. Это может привести к признанию статистически значимыми объясняющие переменные, которые в действительности таковыми могут и не являться.

3.Оценка дисперсии регрессии

является смещенной

оценкой истинного значения

, во многих случаях занижая его.

4.В силу вышесказанного выводы по t- и F-статистикам, опреде­ляющим значимость коэффициентов регрессии и коэффициента детерминации, возможно, будут неверными. Вследствие этого ухудшаются прогнозные качества модели.

4.Методы устранения автокорреляции

Основной причиной наличия случайного члена в модели являют­ся несовершенные знания о причинах и взаимосвязях, определяющих то или иное значение зависимой переменной. Поэтому свойства слу­чайных отклонений, в том числе и автокорреляция, в первую очередь зависят от выбора формулы зависимости и состава объясняющих пе­ременных. Так как автокорреляция чаще всего вызывается неправиль­ной спецификацией модели, то для ее устранения необходимо, прежде всего, попытаться скорректировать саму модель. Возможно, автокор­реляция вызвана отсутствием в модели некоторой важной объясняю­щей переменной. Необходимо попытаться определить данный фактор и учесть его в уравнении регрессии . Также можно попробовать изменить формулу зависимости (например, линейную на лог-линейную, линейную на гиперболическую и т. д.). Однако если все разумные процедуры изменения спецификации моде­ли. на ваш взгляд, исчерпаны, а автокорреляция имеет место, то мож­но предположить, что она обусловлена какими-то внутренними свойствами ряда {ет}. В этом случае можно воспользоваться авторегресси­онным преобразованием. В линейной регрессионной модели либо в моделях, сводящихся к линейной, наиболее целесообразным и про­стым преобразованием является авторегрессионная схема первого по­рядка AR(1).

Для простоты изложения AR(1) рассмотрим модель парной линейной регрессии

(4.1)

Тогда наблюдениям t и (t-1) соответствуют формулы

(4.2)

(4.3)

Пусть случайные отклонения подвержены воздействию авторегресси первого порядка:

где vt,t=2,3…T- случайные отклонения, удовлетворяющие всем предпосылкам МНК, а коэффициент р известен.

Вычтем из (4.2) соотношение (4.3),умножив на

:

(4.4)

Положив

, получим:

Так как по предположению коэффициент р известен, то очевид­но,

вычисляются достаточно просто. В силу того, что слу­чайные отклонения
удовлетворяют предпосылкам МНК, то оценки
и
будут обладать свойствами наилучших линейных несме­щенных оценок.

Однако способ вычисления y, х приводит к потере первого на­блюдения (если мы не обладаем предшествующим ему наблюдением). Число степеней свободы уменьшится на единицу, что при больших выборках не так существенно, но при малых выборках может привес­ти к потере эффективности. Эта проблема обычно преодолевается с помощью поправки Прайса-Виистена:

(4.5)

4.1. Определение

на основе статистики Дарбина-Уотсона

Статистика Дарбина-Уотсона тесно связана с коэффициентом корреляции между соседними отклонениями через соотношение:

(4.1.1)

Тогда в качестве оценки коэффициента

может быть взят коэффициент
. Из (5.1.1) имеем:

(4.1.2)

Этот метод оценивания весьма неплох при большом числе наблюдений. В этом случае оценка rпараметра

будет достаточно точной.

4.2 Метод Кохрана- Оркатта

Другим возможным методом оценивания

является итеративный процесс, называемый методом Кохрана- Оркатта. Опишем данный метод на примере парной регрессии:

И авторегрессионной схемы первого порядка AR(1)

1. Оценивается по МНК регрессия и для нее определяются оценки

отклонений
t=1,2,…n.

2. Используя схему AR(1), оценивается регрессионная зависимость

(4.2.1)

3. На основе данной оценки строится уравнение:

(4.2.2)

с помощью которого оцениваются коэффициенты

и
(в этом случае значение
известно).

4. Значения

подставляются в уравнение регрессии. Вновь вычисляются оценки отклонений и процесс возвращается к этапу 2.

Чередование этапов осуществляется до тех пор, пока не будет достигнута требуемая точность. То есть пока разность между предыдущей и последующей оценками не станет меньше любого наперед заданного числа.

4.3. Метод Хилдрета-Лу

По данному методу регрессия

оценивается для каждого возможного значения

из интервала [-1;1] с любым шагом (например, 0,001;0,01 и т.д.). Величина
, дающая наименьшую стандартную ошибку регрессии, принимается в качестве оценки коэффициента
. И значение
и
оценивается из уравнения регрессии именно с данным значением
.

4.4. Метод первых разностей

В случае, когда есть основания считать, что автокорреляция отклонений очень велика, можно использовать метод превых разностей.

Для временных рядов характерна положительная автокорреляция остатков. Поэтому при высокой автокорреляции полагают

,и, следовательно, уравнение (4.4) принимает вид:

(4.4.1)

Или

Обозначив

из (4.4.1) получим

(4.4.2)