Смекни!
smekni.com

Автокорреляция (стр. 4 из 4)

Из уравнения (4.4.2) по МНК оценивается коэффициент

.Заметим, что коэффициент
в данном случае не определяется непосредственно. Однако из МНК известно, что

В случае

, можно получить следующее уравнение регрессии:

Или

Однако, метод первых разностей предполагает уж слишком сильное упрощение (

). Поэтому более предпочтительными являются приведенные выше итерационные методы.

Вывод

В силу ряда причин в регрессионных моделях может иметь место корреляционная зависимость между соседними случайными отклонениями. Это нарушает одну из фундаментальных предпосылок МНК. Вследствие этого оценки, полученные на основе МНК, перестают быть эффективными. Это делает ненадежными выводы по значимости коэффициентов регрессии и по качеству самого уравнения. Поэтому достаточно важным является умение определить наличие автокорреляции и устранить это нежелательное явление. Существует несколько методов определения автокорреляции, среди которых были выделены графический, метод рядов, критерий Дарбина-Уотсона.

При установлении автокорреляции необходимо в первую очередь проанализировать правильность спецификации модели. Если после ряда возможных усовершенствований регрессии автокорреляция по-прежнему имеет место, то, возможно, это связано с внутренними свойствами ряда отклонений. В этом случае возможны некоторые преобразования, устраняющие автокорреляцию. Среди них выделяется авторегрессионная схема первого порядка AR(1). Для применения указанных схем необходимо оценить коэффициент корреляции между отклонениями. Это может быть сделано различными методами: на основе статистики Дарбина-Уотсона, Кохрана-Оркатта, Хилдрета-Лу и др. В случае наличия среди объясняющих переменных лаговой зависимой переменной наличие автокорреляции устанавливается с помощью h-статистики Дарбина. А для ее устранения в этом случае предпочтителен метод Хилдрета-Лу.

Список использованной литературы

1. Анатольев С. Эконометрика для продолжающих (Эконометрика-3). Курс лекций, М.: Российская Экономическая Школа, 2002-2003

2. Давнис В.В., Тинякова В.И., Мокшина С.И., Воищева О.С., Щекунских С.С. Эконометрика сложных экономических процессов, Воронеж: ВГУ, 2004.

3. Доугерти Кр. Введение в эконометрику, М.: ИНФРА-М, 1997.

4. Елисеева И. И. Эконометрика, М.: Финансы и статистика, 2001.

5. Кремер Н. Ш., Путко Б. А. Эконометрика, М.: ЮНИТИ-ДАНА, 2002.

6. Магнус Я. Р. Эконометрика. Начальный курс, М.: Дело, 1997.

7. Носко В.П. Эконометрика: Введение в регрессионный анализ временных рядов, Москва, 2002.

Приложение А

Значения статистик Дарбина Уотсона dL dUпри 5%-ном уровнезначимости