Смекни!
smekni.com

Экономико-математический метод исследования, его характеристика (стр. 2 из 2)

В результате накопления опыта использования жестко детерминистских моделей были созданы реальные возможности успешного применения более совершенной методологии моделирования экономических процессов, учитывающих стохастику и неопределённость. Здесь можно выделить такие основные направления исследований как: усовершенствование методики моделей жестко детерминистского типа, проведение многовариантных расчётов и модельных экспериментов с вариацией конструкции модели и её исходных данных, изучение устойчивости и надежности получаемых решений, выделение зоны неопределённости, включение в модель резервов, применение приёмов, повышающих приспособляемость экономических решений вероятным и непредвиденным ситуациям, а также распространение моделей, непосредственно отражающих сложность и неопределённость экономических процессов и соответствующий математический аппарат: теорию вероятностей и математическую статистику, теорию игр и статистических решений, теорию массового обслуживания, стохастическое программирование, теорию случайных процессов.

Для классификации математических моделей экономических процессов и явлений используются разные признаки.

По целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые в исследованиях общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач (модели экономического анализа, прогнозирования, управления).

При классификации моделей по исследуемым экономическим процессам и содержательной проблематике можно выделить модели макро- и микроэкономики, а также комплексы моделей производства, потребления, формирования и распределения доходов, трудовых ресурсов, ценообразования, финансовых связей и т.д.

Следующим признаком является характер модели-дескриптивная или нормативная. Дескриптивные модели отвечают на вопрос: как это происходит? или как это вероятнее всего может дальше развиваться?, т.е. они только объясняют наблюдаемые факты или дают вероятный прогноз. Нормативные модели отвечают на вопрос: как это должно быть?, т.е. предполагают целенаправленную деятельность. Типичным примером нормативных моделей являются модели планирования, формализующие тем или иным способом цели экономического развития, возможности и средства их достижения.

Применение дескриптивного подхода с моделировании экономики объясняется необходимостью эмпирического выявления различных зависимостей в экономике. Установления статистических закономерностей экономического поведения социальных групп, изучения вероятных путей развития каких-либо процессов при не изменяющихся условиях или протекающих без внешних воздействий. Примерами дескриптивных моделей являются производственные функции покупательского спроса, построенные на основе обработки статистических данных.

По характеру отражения причинно-следственных связей различают модели жёстко- детерминистские и модели, учитывающие случайность и неопределённость, при этом необходимо различать неопределённость, для описания которой законы теории вероятностей неприменимы. Данный тип неопределенности гораздо более сложен для моделирования.

По способам отражения фактора времени экономико-математические модели делятся на статистические и динамические. В статистических моделях все зависимости относятся к одному моменту или периоду времени, динамические модели характеризуют изменения экономических процессов во времени. По длительности рассматриваемого периода времени различаются модели краткосрочного (до года), среднесрочного (до 5 лет), долгосрочного (10-15 и более лет) прогнозирования и планирования. Само время в экономико-математических моделях может изменяться либо непрерывно, либо дискретно.

Модели экономических процессов чрезвычайно разнообразны по форме математических зависимостей. Особенно важно выделить класс линейных моделей, наиболее удобных для анализа и вычислений и получивших вследствие этого большое распространение. Различия между линейными и нелинейными моделями существенны не только с математической точки зрения, но и в теоретико-экономическом отношении, поскольку многие зависимости в экономике носят принципиально нелинейный характер: эффективность использования ресурсов при увеличении производства, изменение спроса и потребления населения при увеличении производства, изменение спроса и потребления населения при росте доходов и т.п.

По соотношению экзогенных и эндогенных переменных, включаемых в модель, они могут разделяться на открытые и закрытые. Полностью открытых моделей не существует; модель должна содержать хотя бы одну эндогенную переменную. Полностью закрытые экономико-математические модели, т.е. не включающие экзогенных переменных, исключительно редки; их построение требует полного абстрагирования от “среды”, т.е. серьёзного упрощения реальных экономических систем, всегда имеющих внешние связи.

В зависимости от этапности принимаемых решений модели бывают одноэтапные и многоэтапные. В одноэтапных задачах требуется принять решение относительно однократно выполняемого действия, а в многоэтапных оптимальное решение находится за несколько этапов взаимосвязанных действий.

В зависимости от характера системы ограничений выделяются модели обычного вида и специальные виды (транспортные, распределительные задачи), отличающиеся более простой системой ограничений и возможностью благодаря этому использовать более простые методы решения.

Таким образом, общая классификация экономико-математических моделей включает более десяти основных признаков. С развитием экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей (особенно смешанных типов) и новых признаков их классификации осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.

3. Недостатки применения математических методов в экономике

Математический метод при всех его бесчисленных достоин­ствах тем не менее имеет при чрезмерном его употреблении ряд существенных недостатков. Эти недостатки анализировались в ра­ботах многих исследователей, и подобный анализ вполне уме­стен и в отношении экономической науки. Далее мы суммиру­ем все эти слабые места математического метода в экономике в четыре основных пункта:

Первый недостаток математического метода в экономичес­кой науке связан с тем, что данный метод не способен охватить и описать качественные процессы в экономике, а также дать им адекватное объяснение;

Второй недостаток математического метода заключается в том, что математический метод с его усложненным математи­ческим аппаратом значительно осложняет восприятие экономи­ческих истин и результатов представителями иных наук - в пер­вую очередь гуманитарных и социальных;

Третий недостаток математического метода состоит в том, что он виртуализирует экономическую науку, отрывает ее от эмпирической почвы:

«Экономическая наука сейчас зашла так далеко, что пытается работать с трудноуловимыми процессами и механизмами, которые отрицают саму возможность тривиальных замеров и традиционной верификации. Все информационно-ментальные процессы (кото­рыми занимается математический метод в экономике) являются чрезвычайно сложными, зыбкими, динамичными и из­менчивыми. Главное же - они в большинстве случаев не имеют под собой эмпирической основы [1].

Четвертый недостаток математического метода проявляется в том, что он плохо помогает решению практических проблем экономики и неэффективно работает на уровне здравого смысла

Итоги нашего обсуждения роли и значения математического метода в экономике можно подвести словами английского ес­тествоиспытателя Т. Хаксли: «Математика, подобно жернову, лишь перемалывает то, что под него засыплют, и, как, засыпав лебе­ду, вы не получите пшеничной муки, так, исписав целые страни­цы формулами, вы не получите истины из ложных предположений» [1].


Заключение

Существует несколько основных путей развития математи­ческого метода в современной экономической науке: мате­матическое моделирование экономических процессов, ма­тематическая экономия, эконометрика, методы и методология оптимального управления, теория игр, экономическая кибернетика. Перспективными методами исследования в экономике, несомненно, следует считать теорию игр и стохастическое моделирование.

Математические методы не могут не развиваться, также как и сами экономические системы. Это происходит как вследствие изменений в экономике, так и по внутренней логике развития. При этом необязательно, что новые методы с неизбежностью отбрасывают старые, может происходить взаимопроникновение, включение старых теорий в новые (в качестве частного случая).

На развитие и применение математических методов огромное влияние оказало и еще окажет развитие вычислительной техники. Вычислительная техника последних поколений уже позволила на практике применить множество методов, описанных ранее лишь теоретически или на простейших примерах. Кроме всего прочего развитие систем компьютерной обработки, накопления и хранения информации создает новую, весьма обширную информационную базу, которая возможно послужит толчком к созданию новых, ранее неизвестных математических методов поиска и принятия решений, которые можно будет применять в экономике.


Список литературы

1. Балацкий Е.В. Мировая экономическая наука на со­временном этапе: кризис или прорыв? // Науковедение. -2001.- № 2. - С. 33

2. Гатаулин А.М. и др. Математическое моделирование экономических процессов в сельском хозяйстве. - М.: Агропромиздат,1990.- 432 c.

3. Кравченко Р.Г., Попов И.В., Толпекин С.З. Экономико-математические методы в организации и планировании сельскохозяйственного производства. - М.: "Колос", 1973.- 528с.

4. Немчинов В.С. Избранные произведения. Том 3. Экономика и математические методы. - М.: "Наука", 1967. - 490 с.

5. Суслов И.П. Методология экономического исследования. 2-е изд. М.: Экономика, 1983.- 216 с.

6. Экономико-математический энциклопедический словарь. / под ред. Данилова - Данильяна В.И. – М.: Инфра-М, 2003.- 640 с.