Содержание
Введение …………………………………………………………………………. 3
1. Математические методы в современных экономических
исследованиях …………………………………………………………….. 4
2. Экономико-математическое моделирование как метод научного
познания…………………………………………………………………… 7
3. Недостатки применения математических методов в экономике……... 13
Заключение ………………………………………………………………………15
Список литературы ……………………………………………………………...16
Введение
Математика служит людям издавна и успешно. Потребности всей практической деятельности людей, естествознания, техники постоянно ставили и ставят перед математикой новые задачи, стимулируя ее развитие. В свою очередь прогресс в математике делал математические методы более эффективными, расширял сферу их применения и, тем самым, способствовал общему научно-техническому прогрессу и развитию производительных сил. В противовес историческому мифу можно без преувеличения сказать, что мир стоит не на трех китах, а на двух - математике и экономике. Математика - основа всех точных наук, а экономика в двух своих ипостасях - как хозяйственная система и как наука - создает материальные условия для существования людей и помогает им понять «что почем» в окружающей их жизни.
Математика в экономике - это не только определение количественных характеристик и не просто применение числовых примеров для иллюстрации тех или иных экономических положений и теорий. Речь идет об исследовании экономических проблем средствами математики, использовании числового материала для выявления экономических зависимостей и закономерностей и для принятия на этой основе различного рода решений; о появлении комплекса научных и учебных дисциплин, находящихся на стыке экономики, математики и кибернетики и получивших обобщенное название «Экономико-математические методы». Вот некоторые из таких дисциплин: эконометрия, экономическая кибернетика, математическая экономика.
1. Математические методы в современных экономических исследованиях
Математический метод на сегодняшний день более чем востребован экономической наукой. Благодаря энергичному развитию экономико-математических методов экономистам удалось осуществить фундаментальный прорыв к новому экономическому знанию. При этом можно указать на несколько основных путей развития современных экономико-математических методов.
Математическое моделирование экономических процессов является по своей сути главным инструментом применения математики в исследовании хозяйственных процессов. Огромное многообразие экономико-математических моделей, с большим или меньшим успехом применяющееся для решения конкретных экономических проблем, — лучшее свидетельство эффективности метода математического моделирования в экономике.
«В экономико-математических моделях диалектически соединились дедуктивный подход и эксперимент, абстрактное и конкретное, логическое и чувственное, ненаглядное и наглядное. Модели выступают связующим звеном между теорией и действительностью, между экономикой и математикой, количеством и качеством» [5 С. 274.].
Математическая экономия ведет свое происхождение от маржиналистской математической школы конца XIX в., и ее вполне можно интерпретировать как особую математическую школу или особое математическое направление. Главным отличительным признаком этого направления было стремление к математической аксиоматизации экономической науки — стремление, которое, однако, удалось реализовать лишь отчасти.
«Математическая экономия (математическая экономика) — совокупность научных направлений, развивающих экономическую теорию на основе аксиоматического метода: постулаты формализуются в виде математических соотношений, а получаемые модельные конструкции и их обобщения изучаются экономическими средствами» [6 С. 273.].
Современная математическая экономия исследует разнообразных круг вопросов: оптимальное распределение ресурсов, научно-технический прогресс, теорию экономического равновесия и другие проблемы. Математическая экономия при этом только приводит исследователя к формально и логически истинным выводам с использованием математического инструментария, а содержательная интерпретация моделей математической экономии находится за ее пределами — в сфере теоретической и эмпирической экономики.
Методы и методология оптимального управления занимаются проблемой внедрения принципов оптимальности в экономическую практику. Главное здесь понятие экономического оптимума. Экономический оптимум -это наилучшее состояние экономической системы среди всех возможных.
Эконометрика - это направление, которое смогло скомбинировать между собой взаимодействие, как минимум, трех дисциплин: экономической теории, социально-экономической статистики, а также математической статистики и теории вероятностей. Эконометрика ставит главной своей задачей математическое и в целом количественное решение конкретных экономических задач с целью последующего внедрения результатов этого решения в хозяйственную практику.
Экономическая кибернетика включает в себя системный анализ экономики, теорию экономической информации, экономическую семиотику, теорию управляющих систем и т.п. Основным методом экономической кибернетики является метод «черного ящика», предполагающий моделирование экономического объекта с известными данными только о входе экономической информации в данный объект и о выходе из него, но при этом экономист-исследователь не располагает никакой информацией о структуре самого экономического объекта.
Несмотря на первоначально многообещающий характер своих исследований, экономическая кибернетика не оправдала полностью своих ожиданий к концу XX в. В основном это связано с тем, что экономико-кибернетический подход — подход во многом формальный, не влияющий на сущность как самой экономической системы, так и решений, в ней принимаемых. Он способен помочь скорее локально, чем глобально, в решении экономических задач, хотя большинство принципов, им заложенных ранее, до сих пор успешно применяются в экономической науке.
Теория игр в экономических процессах нашла свое место примерно с середины прошлого столетия, и фундаментальную роль здесь сыграл выход монографии американских ученых Дж. Неймана и О. Моргенштерна «Теория игр и экономическое поведение». С тех пор различные игровые методы применяются в экономике при анализе проблем, связанных со стратегическим планированием и управлением в экономике, практикой менеджмента, экономической конфликтологией и т.п. Элементы теории игр используются также в практике проведения деловых игр — как исследовательских, так и образовательных, а также в практике экономического экспериментирования.
2. Экономико-математическое моделирование как метод научного познания
Проникновение математики в Экономическую науку связано с преодолением значительных трудностей, лежащих в природе экономических процессов и специфике экономической науки.
Большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием - “сложная система”. Сложность системы определяется количеством входящих в неё элементов, связями между этими элементами, а также взаимоотношениями между системой и средой. Экономика страны обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природная среда, экономика других стран и т. д.). В управлении экономикой взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы.
Сложность экономики иногда рассматривалась как обоснование невозможности её моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и. любой сложности, И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.
С экономической точки зрения оптимальные решения, полученные с помощью экономическо-математического моделирования, обладают следующими основными свойствами.
1. Оптимальность решения зависит от целей, поставленных при планировании процесса.
2. Оптимальность решения зависит от текущей хозяйственной обстановки.
3. Существенные изменения оптимального варианта происходят только при значительных изменениях обстановки - это свойство называется устойчивостью базиса оптимального плана относительно малых изменений условий.
4. При определении взаимозависимости решений по всем объектам экономики особое значение имеют обратная связь объектов и издержки обратной связи.
5. Оценка рациональности конкретного мероприятия зависит от уровня управления: решение, оптимальное для отдельного предприятия, может быть неоптимальным для отрасли или экономики а целом.
Объектом для экономико-математического моделирования является полностью структурированные проблемы. Частично или слабо структурированные проблемы является объектами для методов системного анализа, сочетающих неформализованные решения специалистов с модельными расчётами по отдельным предметам.
На первых этапах исследований по моделированию экономики применились в основном модели детерминистского типа. В этих моделях все параметры предполагаются точно известными. Однако, детерминистские модели неправильно понимать в механическом духе и отождествлять их с моделями, которые лишены всех “степеней выбора” (возможностей выбора) и имеют единственное допустимое решение. Классическим представителем жёстко детерминистских моделей являлась оптимизационная модель народного хозяйства, которая применялась для определения наилучшего варианта экономического развития среди множества допустимых вариантов.