Но следует иметь в виду, что, поскольку коэффициент Спирмэна учитывает разность только рангов, а не самих значений признаков, он менее точен по сравнению с линейным коэффициентом корреляции. Воспользуемся последним.
Воспользуемся программным пакетом Stata 7.
Корреляционная матрица имеет вид:
. corrudkormvessst
(obs=20)
| ud korm ves sst
-------------+------------------------------------
ud | 1.0000
korm | 0.8851 1.0000
ves | 0.9401 0.8290 1.0000
sst | -0.7875 -0.6497 -0.7587 1.0000
· ud – удой молока на среднегодовую корову,
· korm – расход кормов на 1 корову,
· ves – удельный вес чистопородных коров в стаде,
· sst – себестоимость молока за 1 кг.
Можно сделать вывод, что присутствует обратная связь между себестоимостью и удоем молока (r = - 0,79), себестоимостью и удельным весом (r = - 0,76),себестоимостью и расходом кормов (r = - 0,65).Имеется сильная прямая связи между удоем молока и расходом кормов (r = 0,89), удоем молока и удельным весом (r = 0,94), расходом кормов и удельным весом (r = 0,83). Если сравнивать значения, полученные линейным коэффициентом корреляции и ранговым коэффициентом Спирмэна, то расхождения не превысят 8 %. В большинстве же своем погрешность составляет около 1 %.
Теперь проверим коэффициенты корреляции на значимость:
. pwcorr ud korm ves sst
| ud korm ves sst
-------------+------------------------------------
ud | 1.0000
korm | 0.8851 1.0000
ves | 0.9401 0.8290 1.0000
sst | -0.7875 -0.6497 -0.7587 1.0000
Всекоэффициентызначимы.
Построим модель.
Так как значения удоя молока и значения других показателей отличаются на порядок, то будем использовать вместо переменной «удой молока» переменную натурального логарифма удоя молока.
Рассмотрим в качестве результативного фактора себестоимость молока за 1 кг, поскольку важен расчет именно себестоимости и определение от каких факторов и насколько она зависит. Удой молока, расход кормов на 1 корову и удельный вес чистопородных коров в стаде могут повлиять на значение себестоимости.
Приведем графики зависимости себестоимости от каждого из факторов:
От логарифма удоя молока
От расхода кормов на 1 корову
От удельного веса чистопородных коров в стаде
Графики демонстрируют нам обратную зависимость между результативным фактором – себестоимостью и объясняющим фактором, что подтверждается значениями коэффициентов корреляции.
Вначале рассмотрим линейную модель по всем факторам:
. reg sst lnud korm ves
Source | SS df MS Number of obs = 20
-------------+------------------------------ F( 3, 16) = 10.37
Model | .031800232 3 .010600077 Prob > F = 0.0005
Residual | .016350718 16 .00102192 R-squared = 0.6604
-------------+------------------------------ Adj R-squared = 0.5968
Total | .04815095 19 .002534261 Root MSE = .03197
------------------------------------------------------------------------------
sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnud | -.2305787 .1162704 -1.98 0.065 -.4770609 .0159036
korm | .0026417 .0025775 1.02 0.321 -.0028223 .0081057
ves | -.0000138 .0024772 -0.01 0.996 -.0052651 .0052376
_cons | 2.088534 .7538614 2.77 0.014 .4904194 3.686649
------------------------------------------------------------------------------
Хотя у этой модели и достаточно хороший коэффициент детерминации и согласно F-критерию Фишера оно значимо, параметры при переменных lnud, korm, ves не значимы по t-критерию Стьюдента с P-значениями 0.065, 0.321 и 0.996. Значит, эта модель не подходит.
Построим модель вида:
. reg sst lnud1 korm1 ves1
Source | SS df MS Number of obs = 20
-------------+------------------------------ F( 3, 16) = 10.32
Model | .031744654 3 .010581551 Prob > F = 0.0005
Residual | .016406296 16 .001025393 R-squared = 0.6593
-------------+------------------------------ Adj R-squared = 0.5954
Total | .04815095 19 .002534261 Root MSE = .03202
------------------------------------------------------------------------------
sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnud1 | 14.46292 6.110319 2.37 0.031 1.509625 27.41622
korm1 | -5.633853 5.967609 -0.94 0.359 -18.28462 7.016912
ves1 | .6831225 6.892859 0.10 0.922 -13.92909 15.29533
_cons | -1.33304 .6029802 -2.21 0.042 -2.611301 -.0547791
------------------------------------------------------------------------------
Видим что коэффициент детерминации хорош - 0,659 и по F-критерию Фишера уравнение значимо. Но параметры при переменных korm1, ves1 не значимы по t-критерию Стьюдента с P-значениями 0.359 и 0.922. Значит, эта модель не подходит.
Будем рассматривать различные комбинации переменных при включении в модель. Построим модель вида:
. reg sst lnud korm1 ves1
Source | SS df MS Number of obs = 20
-------------+------------------------------ F( 3, 16) = 10.09
Model | .031497211 3 .01049907 Prob > F = 0.0006
Residual | .016653739 16 .001040859 R-squared = 0.6541
-------------+------------------------------ Adj R-squared = 0.5893
Total | .04815095 19 .002534261 Root MSE = .03226
------------------------------------------------------------------------------
sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnud | -.2065493 .0898758 -2.30 0.035 -.3970775 -.0160212
korm1 | -5.156249 5.939941 -0.87 0.398 -17.74836 7.435864
ves1 | 1.094516 6.895036 0.16 0.876 -13.52231 15.71134
_cons | 2.109487 .8816345 2.39 0.029 .2405058 3.978469
------------------------------------------------------------------------------
Так же как и в предыдущих моделях, значение R-квадрата хорошее, уравнение значимо по F-критерию Фишера, но одновременно с этим параметры при переменных korm1, ves1 с P-значениями 0.398 и 0.876 соответственно не значимы по t-критерию Стьюдента. Также отбросим эту модель.
Построим модель вида:
. reg sst lnud1 korm ves1
Source | SS df MS Number of obs = 20
-------------+------------------------------ F( 3, 16) = 10.60
Model | .032029999 3 .010676666 Prob > F = 0.0004
Residual | .016120951 16 .001007559 R-squared = 0.6652
-------------+------------------------------ Adj R-squared = 0.6024
Total | .04815095 19 .002534261 Root MSE = .03174
------------------------------------------------------------------------------
sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnud1 | 15.74117 6.497854 2.42 0.028 1.966333 29.516
korm | .0027978 .0025644 1.09 0.291 -.0026386 .0082341
ves1 | .0207899 6.780318 0.00 0.998 -14.35284 14.39442
_cons | -1.732706 .8136604 -2.13 0.049 -3.457589 -.0078235
------------------------------------------------------------------------------
R-квадрат хорош- 0,665, уравнение значимо согласно F-критерию Фишера. Но при этом параметры при переменных korm, ves1 с P-значениями 0.291 и 0.998 соответственно не значимы по t-критерию Стьюдента. Также отбросим эту модель.
Рассмотрим модель:
. reg sst lnud1 korm1 ves
Source | SS df MS Number of obs = 20
-------------+------------------------------ F( 3, 16) = 10.31
Model | .031738225 3 .010579408 Prob > F = 0.0005
Residual | .016412725 16 .001025795 R-squared = 0.6591
-------------+------------------------------ Adj R-squared = 0.5952
Total | .04815095 19 .002534261 Root MSE = .03203
------------------------------------------------------------------------------
sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnud1 | 14.53007 7.378598 1.97 0.066 -1.111856 30.172
korm1 | -5.544031 5.927707 -0.94 0.364 -18.11021 7.022147
ves | -.0001462 .002454 -0.06 0.953 -.0053485 .005056
_cons | -1.322613 .969369 -1.36 0.191 -3.377583 .7323579
------------------------------------------------------------------------------
Как и в предыдущих моделях, несмотря на значимость уравнения и хорошее значение коэффициента детерминации, эту регрессионную модель мы также отбросим, так как в ней незначимы параметры при переменных lnud1, korm1, ves согласно t-критерию Стьюдента.
Рассмотрим модель:
. reg sst lnud lnud2 korm korm2 ves ves2
Source | SS df MS Number of obs = 20
-------------+------------------------------ F( 6, 13) = 4.52
Model | .032557159 6 .005426193 Prob > F = 0.0109
Residual | .015593791 13 .001199522 R-squared = 0.6761
-------------+------------------------------ Adj R-squared = 0.5267
Total | .04815095 19 .002534261 Root MSE = .03463
------------------------------------------------------------------------------
sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnud | -5.729043 9.44621 -0.61 0.555 -26.13634 14.67825
lnud2 | .341597 .5910669 0.58 0.573 -.9353253 1.618519
korm | .0132344 .0388671 0.34 0.739 -.0707327 .0972016
korm2 | -.0001134 .0004041 -0.28 0.783 -.0009865 .0007596
ves | .0150622 .0364293 0.41 0.686 -.0636385 .0937629
ves2 | -.0001446 .0003466 -0.42 0.683 -.0008934 .0006042
_cons | 23.57414 36.19652 0.65 0.526 -54.62369 101.772
------------------------------------------------------------------------------
Эта модель также не подходит, поскольку параметры при всех переменных не значимы согласно t-критерию Стьюдента.
Рассмотрим модель:
. reg sst lnud2 korm2 ves2
Source | SS df MS Number of obs = 20
-------------+------------------------------ F( 3, 16) = 10.39
Model | .031819188 3 .010606396 Prob > F = 0.0005
Residual | .016331762 16 .001020735 R-squared = 0.6608
-------------+------------------------------ Adj R-squared = 0.5972
Total | .04815095 19 .002534261 Root MSE = .03195
------------------------------------------------------------------------------
sst | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnud2 | -.0150021 .0079436 -1.89 0.077 -.0318418 .0018377
korm2 | .000028 .0000263 1.07 0.302 -.0000277 .0000838
ves2 | 2.49e-06 .0000227 0.11 0.914 -.0000457 .0000507
_cons | 1.258054 .4178871 3.01 0.008 .3721731 2.143935
------------------------------------------------------------------------------
И в этой модели параметры при переменных не значимы по t-критерию Стьюдента. Отбрасываем эту модель.
Воспользуемся процедурой пошагового отбора регрессоров при построении множественной регрессии. При этом из исходного набора объясняющих переменных будут включаться в число регрессоров в первую очередь те переменные, которые имеют больший уровень значимости. Вначале включим в набор переменных переменную
, а затем переменную .