Смекни!
smekni.com

Особые свойства Гамма-функции Эйлера (стр. 2 из 5)

2.3 Область определения и полюсы

В подынтегральной функции интеграла (2.3) при

экспонента exp(-tz) при R(z) > 0 убывает гораздо быстрее, чем растет алгебраическая функция t(z-1). Особенность в нуле - интегрируемая, поэтому несобственный интеграл в (2.3) сходится абсолютно и равномерно при R (z) > 0. Более того, последовательным дифференцированием по параметру z легко убедиться, что Г(z) - голоморфная функция при R (z) > 0. Однако, непригодность интегрального представления (2.3) при R (z)
0 не означает, что там не определена сама гамма-функция - решение уравнения (2.1).

Рассмотрим поведение Г(z) в окрестности нуля. Для этого представим:

где

- голоморфная функция в окрестности z = 0. Из формулы (2.1) следует:

Тогда

то есть Г(z) имеет полюс первого порядка при z = 0.

Также легко получить:

то есть в окрестности точки

функция Г(z) также имеет полюс первого порядка.

Таким же образом можно получить формулу:

(2.4)

Из этой формулы следует, что точки z = 0,-1,-2,... - простые полюсы гамма-функции и других полюсов на вещественной оси эта функция не имеет. Нетрудно вычислить вычет в точке z = -n, n = 0,1,2,...:

2.4 Представление Ганкеля через интеграл по петле

Выясним, имеет ли гамма-функция нули. Для этого рассмотрим функцию

Полюсы этой функции и есть нули функции Г(z).

Разностное уравнение для I(z) легко получить, воспользовавшись выражением для Г(z):

Выражение для решения этого уравнения в виде интеграла можно получить так же, как было получено интегральное выражение для гамма-функции - через преобразование Лапласа. Ниже приведены вычисления.ни такие же, как и в п.1).ии теграла будут точки ____________________________________________________________________________

или

После разделения переменных получим:

Проинтегрировав получаем:

или

Переход к прообразу Лапласа дает:

В полученном интеграле сделаем замену переменной интегрирования:

тогда

Здесь важно заметить, что подынтегральная функция при нецелых значениях z имеет точку ветвления t = 0. На комплексной плоскости переменной t проведем разрез по отрицательной вещественной полуоси. Интеграл по этой полуоси представим как сумму интеграла по верхнему берегу этого разреза от

до 0 и интеграла от 0 до
по нижнему берегу разреза. Чтобы интеграл не проходил через точку ветвления, устроим вокруг нее петлю.

Рис1: Петля в интегральном представлении Ганкеля.

В результате получим:

Чтобы выяснить значение постоянной, вспомним, что I(1) = 1, с другой стороны:

Интегральное представление

(2.5)

называется представлением Ганкеля по петле.

Легко видеть, что функция 1/Г(z) не имеет полюсов в комплексной плоскости, следовательно, гамма-функция не имеет нулей.

С помощью этого интегрального представления можно получить формулу для произведения гамма-функций. Для этого в интеграле сделаем замену переменной

, тогда:

то есть

2.5 Предельная форма Эйлера

Гамма-функцию можно представить в виде бесконечного произведения. Это можно заметить, если в интеграле (2.3) представить

Тогда интегральное представление гамма-функции:

В этой формуле мы можем поменять пределы - предел интегрирования в несобственном интеграле и предел при

внутри интеграла. Приведем результат:

Возьмем по частям этот интеграл:

Если провести эту процедуру n раз, получим:

Переходя к пределу, получим предельную форму Эйлера для гамма-функции:

(2.6)

2.6 Формула для произведения

Ниже понадобится формула, в которой произведение двух гамма-функций представляется через одну гамма-функцию. Выведем эту формулу, используя интегральное представление гамма-функций.

Повторный интеграл представим как двойной несобственный интеграл. Это можно сделать, воспользовавшись теоремой Фубини. В результате получим:

Несобственный интеграл равномерно сходится. Его можно рассматривать, например, как интеграл по треугольнику, ограниченному осями координат и прямой x+y = R при R

. В двойном интеграле сделаем замену переменных:

Якобиан этой замены

Пределы интегрирования: u меняется от 0 до ∞, v при этом меняется от 0 до 1. В результате получим:

Перепишем опять этот интеграл как повторный, в результате получим:

где Rp > 0, Rv > 0.

2. Производная гамма функции

Интеграл

сходится при каждом

,поскольку
,и интеграл
при
сходится.

В области

, где
- произвольное положительное число, этот интеграл сходится равномерно, так как
и можно применить признак Вейрштраса. Сходящимся при всех значениях
является и весь интеграл
так как и второе слагаемое правой части является интегралом, заведомо сходящимся при любом
.Легко видеть что интеграл сходится по
в любой области
где
произвольно. Действительно для всех указанных значений
и для всех
,и так как
сходится, то выполнены условия признака Вейерштрасса. Таким образом , в области
интеграл
сходится равномерно.