Общая средняя:
Далее рассчитываются
Для оценки влияния факторов
и сравнивают эти значения с соответствующим критическим значением, определяемым, при заданном уровне значимости
Автоматизированный дисперсионный анализ возможен с помощью табличного процессора Excel.Для этого в опции Сервис находим пакет анализа данных (см. рис.)
Лекция№15. Корреляционно – регрессионный анализ
В естественных науках различают функциональную и статистическую зависимости. Под функциональной понимают такую зависимость, когда значению одной переменной соответствует вполне определенное значение другой переменной. Под статистической (вероятностной или стохастической) понимают такую зависимость, когда одна переменная влияет на закон распределения другой. Наибольший интерес для практики представляют вероятностные зависимости в виде закономерностей изменения средних значений (условного математического ожидания) одной случайной величины при условии, что другая принимает определенные значения. Такие вероятностные зависимости получили название корреляционных. Корреляционной зависимостью между двумя переменными величинами называется функциональная зависимость между значениями одной из них и условным математическим ожиданием другой.
Простейшая корреляционная зависимость может быть представлена в виде уравнения регрессии:
Для отыскания такого уравнения регрессии, строго говоря, необходимо знать закон распределения двумерной случайной величины
где
Величина характеризует тесноту связи между случайными переменными
и
в генеральной совокупности. Известно, что при совместном нормальном законе распределения случайных величин
Из свойства коэффициента корреляции следует, что является показателем тесноты связи лишь в случае линейной зависимости (линейной регрессии) между переменными, получаемые, в частности, при совместном нормальном распределение.
В практике статистических исследований нам не известны законы распределения генеральных совокупностей, располагаем лишь выборкой пар значений
Основной метод нахождения неизвестных параметров уравнений регрессии в статистических исследованиях является метод наименьших квадратов. Суть этого метода в том, что неизвестные параметры уравнений регрессии выбираются таким образом, чтобы сумма квадратов отклонений эмпирических групповых средних
где
где
Линейная корреляционная зависимость и прямые регрессии
Линейную корреляционную зависимость между переменными