2. Эти деньги за 54 года по сложным процентам вырастут в сумму x∙1.0554 руб. (по формуле сложных процентов).
3. Найдём частость доживания 16-летних до 70-ти лет. Читаем в особых таблицах смертности: 16-летних из 100 000 взятых остаётся к 70 годам 39324, следовательно, искомое частное равно 39324/100 000≈0,393, а так как по закону больших чисел частость как угодно мало отличается от вероятности, если первая найдена при большом числе испытаний , то Р ≈ 0,393. Итак, вероятность 16-летнему дожить до 70 лет ≈ 0,393.
4. Математическое ожидание страховой организации равно x∙1.0554руб.∙1 (1 – вероятность дожития N с точки зрения страховой организации, т.е. предполагается достоверное наступление страхового случая); математическое ожидание N равно 10000∙0,393.
5. Если не преследуется прибыль, то математические ожидания страховой организации и страхующегося N должны быть равны, т.е. x∙1.0554=10 000∙0,393.
10 000∙0.393
6. Решив уравнение, найдём: x=-------------------- ≈ 281,6 руб., что можно рассчитать
1.0554
непосредственно, хотя это легче сделать логарифмированием:
6.1. log1.05x = log1.05(3930) – 54.
6.2. x = 1.05 log1.05(3930) – 54.
6.3. x ≈ 281,6 руб.
P. S.
«Пять чувств, которыми природа одарила человека, недостаточны для того, чтобы вести научные предвиденья, без которых нельзя и невозможно целесообразно изменять природу; надо развивать математическое мышление, которое помогает вскрыть и понять то, что невидимо, неслышимо, необоняемо, неосязаемо, невкушаемо, но существует в реальности.
Основной метод познания реальности есть математический метод, который и подарил XIX-ому, а в особенности XX-ому веку великую силу физико-математических разделов, под влиянием которой человек становится всё более могущим, потому что становится всё более знающим.»
Профессор математики Иван Козьмич Андронов.
Используемая литература:
И. К. Андронов, Математика для техникумов (курс единой математики), издательство «высшая школа», Москва, 1965 г., (824 c.).