Смекни!
smekni.com

Прикладная математика 2 (стр. 10 из 10)

;
;
;

;
;
;

;
;
;

;
;
;

Нанесем средние ожидаемые доходы `Q и риски r на плоскость - доход откладываем по горизонтали, а риски

по вертикали (см. рис.):

Получили 4 точки. Чем правее точка (`Q, r), тем более доходная операция, чем точка выше - тем более она рисковая. Значит, нужно выбирать точку правее и ниже. Точка (`Q¢, r¢) доминирует точку (`Q, r) если `Q¢³Q и r¢£ r. В нашем случае точка 2 доминирует точку 4.

Точка, не доминируемая никакой другой, называется оптимальной по Парето, а множество всех таких точек называется множеством оптимальности по Парето. Легко видеть, что если из рассмотренных операций надо выбирать лучшую, то ее обязательно надо выбрать из операций, оптимальных по Парето.

Найдем лучшею операцию по формуле: j (Q)= 2×Q - r , критерием оптимальности будет являться принцип максимизации результата для этого показателя, получаем:

j (Q1)=2·10-7,75=12,25;

j (Q2)=2· (-3)-2,65= -8,65;

j (Q3)=2·4-5,54=2,46;

j (Q4)= 2· (-23/6)-3,13≈ -10,8

Видно, что 1-ая операция – лучшая, а 4-ая – худшая. Таким образом точками, оптимальными по Парето являются точки: 1 и 3.

8. Принятие решений в условиях неопределенности

Задание:

Рассмотреть задачу принятия решений в условиях неопределенности, исходные данные:

0 8 12 24
1/4 1/4 1/3 1/6
0 2 4 16
1/3 1/3 1/6 1/6

-6 -2 0 -6
1/4 1/4 1/3 1/6
-6 -5 -4 3
1/3 1/3 1/6 1/6

Решение:

Предположим, что ЛПР (Лицо, Принимающее Решения) рассматривает четыре возможных решения.

. Ситуация неопределенна, наличествует какой-то из вариантов
. Если будет принято
-e решение, а ситуация есть
-я , то фирма, возглавляемая ЛПР, получит доход
. Матрица
- матрица последствий (возможных решений) задана:

Для того, чтобы оценить риск, который несет

-e решение, задана матрица рисков

Составим матрицу рисков. Имеем q1=0; q2=8; q3=12; q4=24. Следовательно, матрица рисков есть:

Ситуация полной неопределенности характеризуется отсутствием какой бы то ни было дополнительной информации. Существуют правила-рекомендации по принятию решений в этой ситуации:

Правило Вальда (правило крайнего пессимизма). Рассматривая

-e решение будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход
.

Но теперь уж выберем решение

с наибольшим
. Итак, правило Вальда рекомендует принять решение
, такое что

Так, в нашей задаче, имеем a1=0; a2=-6; a3=0; a4=-6. Теперь из этих чисел находим максимальное. Это – 0 . Значит, правило Вальда рекомендует принять 1-ое или 3-е решение.

Правило Сэвиджа (правило минимального риска). При применении этого правила анализируется матрица рисков

. Рассматривая
-e решение будем полагать, что на самом деле складывается ситуация максимального риска

Но теперь уж выберем решение

с наименьшим
. Итак, правило Сэвиджа рекомендует принять решение
, такое что

Так, в нашей задаче , имеем b1=0; b2=30; b3=8; b4=21. Теперь из этих чисел находим минимальное. Это – 0. Значит правило Сэвиджа рекомендует принять 1-ое решение.

Правило Гурвица (взвешивающее пессимистический и оптимистический подходы к ситуации). Принимается решение

, на котором достигается максимум

где

. Значение
выбирается из субъективных соображений. Если
приближается к 1, то правило Гурвица приближается к правилу Вальда, при приближении
к 0, правило Гурвица приближается к правилу "розового оптимизма". При
правило Гурвица рекомендует 1-ое решение:

1/2·(0)+1/2·24= 12

1/2· (-6)+1/2·0= -3

1/2· (0)+1/2·16= 8

1/2· (-6)+1/2·3= -3/2

Предположим, что в рассматриваемой схеме известны вероятности

того, что реальная ситуация развивается по варианту
. Именно такое положение называется частичной неопределенностью. Как здесь принимать решение? Можно выбрать одно из следующих правил.

Правило максимизации среднего ожидаемого дохода. Доход, получаемый фирмой при реализации

-го решения, является случайной величиной
с рядом распределения

Математическое ожидание

и есть средний ожидаемый доход, обозначаемый также
. Итак, правило рекомендует принять решение, приносящее максимальный средний ожидаемый доход.

В схеме из предыдущего п. вероятности есть (1/4, 1/4, 1/3, 1/6). Тогда

Q1= 0*1/4+8*1/4+12*1/3+24*1/6=10

Q2= -6*1/4-2*1/4+0*1/3-6*1/6= -3

Q3= 0*1/4+2*1/4+4*1/3+16*1/6= 4,5

Q4= -6*1/4-5*1/4-4*1/3+3*1/6= -43/12≈ -3,58

Максимальный средний ожидаемый доход равен 10, что соответствует 1-му решению.

Правило минимизации ср