Смекни!
smekni.com

Прикладная математика 2 (стр. 1 из 10)

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ

Кафедра прикладной математики

КУРСОВАЯ РАБОТА

по дисциплине "Прикладная математика"

Выполнила:

Институт: ИУХМП

Специальность: Менеджмент организации

Отделение (д/о, в/о): дневное отделение

Курс: II

Группа: М/О II-1

Руководитель: Чистяков В.С.

Дата сдачи на проверку : ...………………………..

Дата защиты: .........................................

Оценка: .........................................

Подпись руководителя: ..........................................

Москва - 2006

Содержание

1) Цели и задачи курсового проекта…………………………………. ...3

2) Линейная производственная задача………………………………… ..3

3) Двойственная задача…………………………………………………… 6

4) Транспортная задача линейного программирования……………….12

5) Динамическое программирование. Распределение капитальных вложений…………………………………………………………………19

6) Задача формирования оптимального портфеля ценных бумаг……22

7) Матричная игра как модель конкуренции и сотрудничества… …27

8) Анализ доходности и риска финансовых операций…………… ….33

9) Принятие решений в условиях неопределенности………………. ..35

ЦЕЛИ И ЗАДАЧИ КУРСОВОГО ПРОЕКТА

Выполнение курсового проекта по прикладной математике направлено на усиление связи обучения студентов с практикой совершенствования управления, организации современного производства, всего механизма хозяйствования.

В процессе работы над курсовым проектом студент не только закрепляет и углубляет теоретические знания, полученные на лекциях и на практических занятиях, но и учится применять методы исследования операций при постановке и решении конкретных экономических задач.

Цель курсового проекта - подготовить студента к самостоятельному проведению операционного исследования, основными этапами которого являются построение математической модели, решение управленческой задачи при помощи модели и анализ полученных результатов.

1. Линейная производственная задача

Задание:

Сформулировать линейную производственную задачу и составить ее математическую модель, где заданы технологическая матрица А затрат различных ресурсов на единицу каждой продукции, вектор объемов ресурсов В и вектор удельной прибыли С при возможном выпуске четырех видов продукции с использованием трех видов ресурсов

Преобразовать данную задачу к виду основной задачи линейного программирования, решить ее, найти оптимальную производственную программу, максимальную прибыль, остатки ресурсов различных видов и указать ²узкие места² производства.

В последней симплексной таблице указать обращенный базис Q-1, соответствующий оптимальному набору базисных неизвестных. Проверить выполнение соотношения

H = Q-1B

Если по оптимальной производственной программе какие-то два вида продукции не должны выпускаться, то в таблице исходных данных вычеркнуть соответствующие два столбца, составить математическую модель задачи оптимизации производственной программы с двумя оставшимися переменными, сохранив прежнюю нумерацию переменных и решить графически.

Постановка задачи:

Компания «Малыш» выпускает четыре вида детского питания, используя для этого сухое молоко, сою и фруктовое пюре. Известна технологическая матрица А затрат любого вида ресурса на единицу каждого вида питания, вектор В объемов имеющихся ресурсов и вектор С стоимости каждого вида питания.

2 3 0 4 148

A = 4 1 5 0 B= 116 C=(30 25 14 12)

0 2 4 3 90

Примем следующие обозначения: аij – расход i-ого ресурса на единицу j-го вида питания; bi – запас i-ого ресурса; сj– прибыль на единицу j-го вида питания; xj – количество выпускаемого питания j-ого вида.

На производство x1 питания 1-го вида

x2 питания 2-го вида

x3 питания 3-го вида

x4 питания 4-го вида компания затратит следующее количество ресурсов:

(1)

Требуется найти производственную программу X* = (x1, x2, x3, x4), реализация которой обеспечит компании получение наибольшей прибыли:

,

при линейных ограничениях неравенства (1).

Решение:

Приведем задачу к основной задаче линейного программирования. Для этого добавим в левую часть системы ограничений (1) дополнительные неотрицательные неизвестные x5, x6, x7, которые по физическому смыслу будут представлять собой:

x5остаток ресурса 1-го вида,

x6остаток ресурса 2-го вида,

x7остаток ресурса 3-го вида.

Строим симплексную таблицу.

В качестве базисных неизвестных могут быть приняты неизвестные х5, х6, х7, так как каждый из них входит только в одно уравнение системы и не входит в другие уравнения. Приравняв к нулю свободные переменные х1, х2, х3, х4 , получаем базисное неотрицательное решение:

х1=0, х2=0, х3=0, х4=0, х5=148, х6=116, х7=90

Из уравнения целевой функции видно, что наиболее выгодно начинать производить продукцию 1-ого вида, так как прибыль здесь будет наибольшая.

Выясним, до каких пор наши ресурсы позволяют увеличить выпуск этой продукции:

Так как, в целевой функции нет базисных переменных, то можно её представить в виде:

0 – Z = -30x1-25x2-14x3-12x4

Ć Б Н X1 X2 X3 X4 X5 X6 X7 α Пояснения
0 X5 148 2 3 0 4 1 0 0 74

min(Dj<0)= -30

min(α)=29,

x1 в базис, x6 из базиса

0 X6 116 4 1 5 0 0 1 0 29
0 X7 90 0 2 4 3 0 0 1
0-Z -30 -25 -14 -12 0 0 0
0 X5 90 0 5/2 -5/2 4 1 -1/2 0 36

min(Dj<0)= -35/2

min(α)=36,

x2 в базис, x5 из базиса

30 X1 29 1 1/4 5/4 0 0 1/4 0 116
0 X7 90 0 2 4 3 0 0 1 45
870-Z 0 -35/2 47/2 -12 0 15/2 0
25 X2 36 0 1 -1 8/5 2/5 -1/5 0
решения оптимальны
30 X1 20 1 0 3/2 -2/5 -1/10 3/10 0
0 X7 18 0 0 6 -1/5 -4/5 2/5 1
1500-Z 0 0 6 16 7 4 0

x1=20, x2=36, x3=0, x4=0, x5=0, x6=0, x7=18 определяют производственную программуx1=20, x2=36, x3=0, x4=0

Прибыль будет наибольшей когда

, при этом

остатки ресурсов: 1-ого вида x5=0

2-ого вида x6=0

3-ого вида x7=18

Также надо обратить внимание на экономический смысл элементов последней строки последней симплексной таблицы. Коэффициенты ∆3 =6 при переменной Х3, ∆4 =16 при переменной Х4 показывают, что если произвести одну единицу продукции 3-ого или 4-ого видов, то прибыль уменьшится на 6 или 16 единиц соответственно.