Таке рівняння можна дослідити графічно:
Кожну точку треба дослідити на стійкість по Ляпунову. Якщо
, то точка спокою нестійка; , то точка спокою стійка.Якщо
на цьому проміжку буде нестійкою точкою, а друга точка буде стійкою. Цей процес називається перехідним періодом. В момент, коли обидві точки стають нестійкими.Але з’являються стійкі точки періоду 2. Для того, щоб їх знайти необхідно дослідити точки рівноваги другої ітерації відображення, тобто ми будемо брати
і точка буде відображатись сама в себе.З часом маємо стійку точку і рівняння коло такої точки потрапляє на цикл періоду 2. При подальшій зміні параметра λ нові точки рівноваги знов змінюють свою стійкість і з’являються цикли з періодом 4.
Цей процес продовжується доки значення λ не досягає 3,56994 – число Фейгенбаума. При перевищенні λ цього значення з’являються хаотичні ітерації.
Перші 300 ітерацій чекаємо поки пройдуть всі перехідні процеси. Ще 300 раз, але вже виводимо значення координати на графік.
Комплексні відображення і множина Мондельброта.
Множина М є прикладом фрактальних кордонів областей притягування атракторів в фазовому просторі. Базується на двовимірному відображенні комплексної змінної
, . У дійсних змінних це відображення має виглядЯкщо
При одних значеннях параметрів a і b послідовність відображень буде знаходитись в деякій обмеженій області. При других значеннях параметрів ця послідовність дуже швидко іде у нескінченність.
Приймаємо, що якщо 400 ітерацій
і <2 то така точка належить множині М і є її атрактором.