Смекни!
smekni.com

Власні значення і власні вектори матриці (стр. 2 из 8)

Формула (1) являє собою правило складання елементів матриці С, що являє собою добуток матриці А на матрицю В. Це правило можна сформулювати і словесно: елемент

, що стоїть на перетині і-го рядка та j-го стовпця матриці
, дорівнює сумі попарних добутків відповідних елементів і-го рядка матриці А та j-го стовпця матриці В.

В якості приклада застосування вказаного правила приведемо формулу перемноження квадратних матриць другого порядку

З формули (1) витікають наступні властивості добутку матриці А на матрицю В:

1.

2.

або

Серед квадратних матриць виділимо клас так званих діагональних матриць, у кожної з яких елементи, що розташовані не на головній діагоналі, дорівнюють нулю. Кожна діагональна матриця має вид

,

де

— які завгодно числа. Легко бачити, що якщо всі ці числа рівні між собою, тобто
то для будь-якої квадратної матриці А порядку n справедлива рівність
.

Серед усіх діагональних матриць, у яких діагональні елементи співпадають

особливу роль відіграють дві матриці. Перша з них отримується при d = 1, називається одиничною матрицею n-го порядку і позначається Е. Друга матриця отримується при d = 0, називається нульовою матрицею n-го порядку і позначається О.

Таким чином,

[2, стор. 14]

З правил дій над матрицями безпосередньо витікає, що сумма і добуток діагональних матриць буде знову діагональною матрицею:


Розглянемо тепер довільну квадратну матрицю Х порядка п з елементами з кільця К. За означенням вважаємо

Оскільки при множені декількох матриць дужки можна розташовувати довільно, то для будь-яких цілих невід’ємних p, q та довільної матриці Х над асоціативним кільцем К маємо

, (2)

.

Матриці А і В називаються переставними (комутативними), якщо

Зі співвідношення (2) отримаємо

,

і, значить, всі натуральні степені однієї і тієї ж матриці переставні між собою.

Справедливе й більш загальне твердження: якщо матриці А і В переставні, то будь-які їх натуральні степені також переставні й для будь-якого натурального p маємо

Транспонування матриць.

Розглянемо довільну матрицю

Матриця

що отрималася з А заміною рядків стовпцями, називається транспонованою по відношенню до А.

Для довільних матриць А, В мають місце наступні правила транспонування:

,

де, α, β — довільні числа.

Якщо А — довільна квадратна матриця і

то А називається симетричною; якщо ж


то — кососиметричною. [4]

Поняття визначника. Розглянемо довільну квадратну матрицю будь-якого порядку n:

Визначник (або детермінант) визначається для довільної квадратної матриці А, і являє собою поліном від всіх її елементів. Позначається — або det(A), або — в розгорнутому вигляді

(матриця обмежується вертикальними лініями). Маючи на увазі порядок матриці А, про її визначник кажуть як про визначник порядку п.

Для п=1:

для п=2:


для п=3:

для п = 4 формула стає громіздкою.

Введемо тепер визначник довільного порядку п.

Впорядкована пара різних натуральних чисел (а,b) утворює інверсію (або порушення порядку), якщо

. Будемо позначати число інверсій в парі (а,b) через
. Таким чином

Число інверсій в послідовності різних натуральних чисел

визначається наступним чином:

Визначником (або детермінантом) матриці


Називається

де сумма поширюється на всілякі перестановки

елементів
, Число п називається порядком визначника. В загальному випадку сума, що визначає детермінант порядку п, містить п! доданків, кожен з яких являє собою добуток п елементів визначника, взятих по одному з кожного рядка й з кожного стовпця (тобто після того, як в добуток вставляється елемент
більше в цей добуток не береться жодного елемента з j-го рядка та k-го стовпця). Знак в добутку визначається по вказаному вище правилу.

1.2 Власні значення та власні вектори матриці

Якщо А — квадратна матриця п-го порядку і

при
, то число l називається власним значенням матриці, а ненульовий вектор х — відповідним йому власним вектором. Перепишемо задачу в такому вигляді

(1)

Для існування нетривіального розв’язку задачі (1) має виконуватися умова

(2)

Цей визначник являє собою многочлен п-ї степені від l; його називають характеристичним многочленом. Значить, існує п власних значень — коренів цього многочлена, серед яких можуть бути однакові (кратні).

Якщо знайдено деяке власне значення, то, при підстановці його в однорідну систему (1), можна визначити відповідний власний вектор. Будемо нормувати власні вектори[1]. Тоді кожному простому (не кратному) власному значенню відповідає один (з точністю до напрямку) власний вектор, а сукупність всіх власних векторів, що відповідають сукупності простих власних значень, лінійно-незалежна. Таким чином, якщо всі власні значення матриці прості, то вона має п лінійно-незалежних власних векторів, які утворюють базис простору.

Кратному власному значенню кратності р може відповідати від 1 до р лінійно-незалежних власних векторів. Наприклад, розглянемо такі матриці четвертого порядку:

(3)

В кожної з них характеристичне рівняння приймає вигляд

, а отже, власне значення
і має кратність р=4. Проте в першої матриці є чотири лінійно-незалежних власних вектора

(4)

У другої матриці є тільки один власний вектор е1. Другу матрицю називають простою жордановою (або класичною) підматрицею. Третя матриця має так звану канонічну жорданову форму (по діагоналі стоять або числа, або жорданові підматриці, а інші елементи дорівнюють нулеві).

Таким чином, якщо серед власних значень матриці є кратні, то її власні вектори не завжди утворюють базис. Однак і в цьому випадку власні вектори, що відповідають різним власним значенням, являються лінійно-незалежними.[3, стор 156]