Сюди ж (рядок 1 таблиці 1) поміщаємо елемент
що одержується аналогічним прийомом з контрольного стовпця Σ. Число -5 повинно співпасти з сумою елементів рядка I, що не входять в контрольний стовпець (після заміни елементу
на -1). Для зручності число -1 записуємо поряд з елементом , відокремлюючи від останнього межею.У рядках 5-8 в графі М-1 виписуємо третій рядок матриці М-1, яка в силу формули (7) співпадає з четвертим рядком початкової матриці А. У рядках 5-8 у відповідних стовпцях виписуємо елементи матриці
B = АМ3,
що обчислюються за двочленними формулами (6) для невідмічених стовпців і по одночленній формулі (6') для відміченого стовпця. Наприклад, для першого стовпця маємо:
і т.д.
Перетворені елементи третього (відміченого) стовпця отримуються за допомогою множення початкових елементів на
= 0,5. Наприклад,Відмітимо, що останній рядок матриці В повинен мати вигляд
0 0 1 0.
Для контролю поповнюємо матрицю В перетвореними по аналогічних двочленних формулах з
відповідними елементами стовпця Σ. Наприклад,Отримані результати записуємо в стовпці Σ' у відповідних рядках. Додавши до них елементи третього стовпця, одержимо контрольні суми
для рядків 5-8 (стовпець Σ).
Перетворення
,що проведене над матрицею і що дає матрицю , змінює лише третій рядок матриці В, тобто сьомий рядок таблиці. Елементи цього перетвореного рядка 7' виходять по формулі (10), тобто є сумами парних добутків елементів стовпця , що знаходяться в рядках 5-8, на відповідні елементи кожного із стовпців матриці В. Наприкладі т. д.
Такі ж перетворення проводимо над стовпцем Σ:
В результаті одержуємо матрицю C, що складається з рядків 5, 6, 7', 8 з контрольними сумами Σ, причому матриця C подібна матриці А і має один зведений рядок 8. Цим закінчується побудова першого подібного перетворення
.Далі, прийнявши матрицю C за вихідну і виділивши елемент
(другий стовпець), продовжуємо процес аналогічним чином. В результаті одержуємо матрицю , елементи якої розташовані в рядках 9, 10', 11, 12, що містить два зведені рядки. Нарешті, відправляючись від елементу (перший стовпець) і перетворюючи матрицю D в подібну їй, одержуємо шукану матрицю Фробеніуса Р, елементи якої записані в рядках 13', 14, 15, 16. На кожному етапі процесу контроль здійснюється за допомогою стовпців Σ і Σ'.Таким чином, матриця Фробеніуса буде мати вигляд:
Звідси віковий визначник, приведений до нормального виду Фробеніуса, запишеться так:
або
.Виняткові випадки в методі А. М. Данілевського.
Процес А. М. Данілевського [1] відбувається без жодних ускладнень, якщо всі елементи, що виділяються, відмінні від нуля. Ми зупинимося зараз на виняткових випадках, коли ця вимога порушується.
Припустимо, що при перетворенні матриці А в матрицю Фробеніуса Р ми після декількох кроків пришли до матриці вигляду
причому виявилось, що
.Тоді продовжувати перетворення по методу А. М. Данілевського не можна. Тут можливі два випадки.
1. Нехай якийсь елемент матриці D, що стоїть ліворуч нульового елемента
, відмінний від нуля, тобто , де . Тоді цей елемент висуваємо на місце нульового елементу , тобто переставляємо (k-1) -й і k -й стовпці матриці D і одночасно переставляємо її (k-1) -й і l-й рядки. Можна довести, що одержана нова матриця D' буде подібна колишній. До нової матриці застосовуємо метод А.М.Данілевського.2. Нехай
, тоді D має виглядУ такому разі віковий визначник det(D - lЕ) розпадається на два визначники
det (D - lЕ) = det (D1 - lЕ) det (D2 - lЕ).
При цьому матриця D2 вже приведена до канонічної форми Фробеніуса і тому det (D2 - lЕ) обчислюється відразу. Залишається застосувати метод А. М. Данілевського до матриці D1.
Обчислення власних векторів по методу А. М. Данілевського.
Метод А. М. Данілевського [1] дає можливість визначати власні вектори даної матриці А, якщо відомі її власні значення. Неай l— власне значення матриці А, а отже, і власне значення подібної їй матриці Фробеніуса Р.
Знайдемо власний вектор
матриці Р, відповідний даному значенню l: Ру = lу. Звідси (Р - lЕ) у = 0 абоПеремножуючи матриці, одержимо систему для визначення координат
власного вектора у:Система (1) — однорідна. З точністю до коефіцієнта пропорційності розв’язки її можуть бути знайдені таким чином. Покладемо yn=1. Тоді послідовно одержимо:
(2)Таким чином, шуканий власний вектор є
.Позначимо тепер через х власний вектор матриці А, що відповідає значенню l. Тоді, очевидно, маємо: