Задача 1
Дослідимо тривісне напруження стану елемента тіла, представленого на малюнку. Матриця напруги для нього має вигляд
Якщо виходити з того, що руйнування станеться при максимальній напрузі, то необхідно знати величину найбільшого головного напруження яке відповідає найбільшому власному значенню матриці напруги. Для знаходження цієї напруги скористаємося одним методом ітерацій. Одержимо власне значення
і такий власний векторЗадача 2. [12, стор. 70]Для довільного тривимірного твердого тіла можна ввести три моменти інерції відносно трьох взаємно перпендикулярних осей і три змішані моменти інерції відносно трьох координатних площин. Відомо, що для несиметричного тіла при фіксованому початку координат існує єдина орієнтація координатних осей, при якій змішані моменти інерції обертаються в нуль. Такі осі називаються головними осями інерції, а відповідні моменти інерції - головними моментами інерції, серед яких є найбільший, найменший і такий, що має проміжне значення. Для матриці моментів інерції
знайти три головних моменти інерції.
Задача 3. [12, стор. 70]Баржа призначена для перевезення через озеро Ері зчепки з шести залізничних вагонів. Буксир тягне її за носову частину, як показано на малюнку. Значення мас вагонів і коефіцієнтів жорсткості сполучних елементів вказані під малюнком. Існує побоювання, що в зчепленні вагонів при хвилюванні на озері можуть виникнути резонансні продольні коливання. Обчислити шість власних частот даної механічної системи і порівняти їх з частотою хвилі, рівній 1 рад/с. Власні частоти пов'язані з власними значеннями динамічної матриці D співвідношенням
Динамічна матриця утворюється із матриць жорсткості [К] і мас [M]
.Задача 4. [12, стор. 71] Консольний брус довжиною 10 м, що має згинну жорсткість
і погону масу 10 кг/м, апроксимується двома точковими масами по 50 кг кожна, що розташовані в центрі та на вільному кінці бруса.
Потрібно знайти дві основні частоти коливань бруса. Це можна зробити, знаючи власні значення
динамічної матриці та маючи на увазі, що . — діагональна матриця, на діагоналі якої стоять маси точок; — матриця згину, в якій елементи і-го рядка являють собою відхилення точки j під дією одиничної сили, що прикладена до точки і. Осьова сила відсутня. Деформаціями здвигу можна знехтувати.У першому розділі курсової роботи проаналізовано науково-методичну літературу з теми дослідження.
Вивчення даної теми ми почали з розкриття дуже важливого для нашого дослідження поняття "матриця".
Ми розглянули основні відомості про матриці та визначники, висвітлили означення власних значень та власних векторів матриць.
В другому розділі ми розглянули теоретичні основи таких методів:
1) метод А. М. Данілевського;
2) метод А. Н. Крилова;
3) метод Леверрьє;
4) метод невизначених коефіцієнтів;
5) метод скалярних добутків для знаходження першого власного значення дійсної матриці.
Наведені приклади задач з фізики, що зводяться до відшукання власних значень та власних векторів матриці.
Дана робота має практичне застосування, її матеріал може бути використаний на факультативних заняттях з лінійної алгебри для формування наукового світогляду та математичної культури студентів.
1. Демидович Б. П., Марон И. А. Основы вычислительной математики. — 3-е изд. — М.: Наука, 1966. — 560 с.
2. Ильин В. А., Позняк Э. Г. Линейная алгебра: Учеб. Для вузов — 4-е изд. — М.: Наука. Физматлит, 1999. — 296 с.
3. Калиткин Н. Н. Численные методы. — М.: Мир, 1988. — 512 с.
4. Мальцев А. И. Основы линейной алгебры. — 3-е изд. — М.: Наука, 1968. — 402 с.
5. Марчук Г. И. Методы вычислительной математики — М.: Наука, 1977. — 392с., ил.
6. Приближение функций, дифференциальные и интегральные уравнения/Под ред. Б. П. Демидовича. — М.: Наука, 1987. — 368 с.
7. Фаддеев Д. К., Фаддеева В. Н. Вычислительные методы линейной алгебры. — М.: Физматгиз, 1963. — 408 с.
8. Фокс А., Пратт М. Вычислительная геометрия. Применение в проектировании и на производстве: Пер. с англ. — М.: Мир, 1982. — 304 с., ил.
9. Форсайт Дж., Молер К. Численное решение систем линейных уравнений. — М.: Мир, 1969. — 285 с.
10. Форсайт Дж., Малькольм М., Моулер К. Машинные методы математических вычислений: Пер. с англ. — М.: Мир, 1980. — 277 с., ил.
11. Хемминг Р. В. Цыфровые фильтры: Пер. с англ./Под ред. А. М. Трахтмана — М.: Советское радио, 1980. — 224 с., ил.
12. Шуп Т. Решение инженерных задач на ЭВМ: Практическое руководство. Пер. с англ. — М.: Мир, 1982. — 238с., ил.
[1]Нормуванням (на одиницю) вектора х називають множення його на
; нормований вектор має одиничну довжину.