Задача 1
Дослідимо тривісне напруження стану елемента тіла, представленого на малюнку. Матриця напруги для нього має вигляд
Якщо виходити з того, що руйнування станеться при максимальній напрузі, то необхідно знати величину найбільшого головного напруження яке відповідає найбільшому власному значенню матриці напруги. Для знаходження цієї напруги скористаємося одним методом ітерацій. Одержимо власне значення
Задача 2. [12, стор. 70]Для довільного тривимірного твердого тіла можна ввести три моменти інерції відносно трьох взаємно перпендикулярних осей і три змішані моменти інерції відносно трьох координатних площин. Відомо, що для несиметричного тіла при фіксованому початку координат існує єдина орієнтація координатних осей, при якій змішані моменти інерції обертаються в нуль. Такі осі називаються головними осями інерції, а відповідні моменти інерції - головними моментами інерції, серед яких є найбільший, найменший і такий, що має проміжне значення. Для матриці моментів інерції
знайти три головних моменти інерції.
Задача 3. [12, стор. 70]Баржа призначена для перевезення через озеро Ері зчепки з шести залізничних вагонів. Буксир тягне її за носову частину, як показано на малюнку. Значення мас вагонів і коефіцієнтів жорсткості сполучних елементів вказані під малюнком. Існує побоювання, що в зчепленні вагонів при хвилюванні на озері можуть виникнути резонансні продольні коливання. Обчислити шість власних частот даної механічної системи і порівняти їх з частотою хвилі, рівній 1 рад/с. Власні частоти пов'язані з власними значеннями динамічної матриці D співвідношенням
Динамічна матриця утворюється із матриць жорсткості [К] і мас [M]
Задача 4. [12, стор. 71] Консольний брус довжиною 10 м, що має згинну жорсткість
Потрібно знайти дві основні частоти коливань бруса. Це можна зробити, знаючи власні значення
У першому розділі курсової роботи проаналізовано науково-методичну літературу з теми дослідження.
Вивчення даної теми ми почали з розкриття дуже важливого для нашого дослідження поняття "матриця".
Ми розглянули основні відомості про матриці та визначники, висвітлили означення власних значень та власних векторів матриць.
В другому розділі ми розглянули теоретичні основи таких методів:
1) метод А. М. Данілевського;
2) метод А. Н. Крилова;
3) метод Леверрьє;
4) метод невизначених коефіцієнтів;
5) метод скалярних добутків для знаходження першого власного значення дійсної матриці.
Наведені приклади задач з фізики, що зводяться до відшукання власних значень та власних векторів матриці.
Дана робота має практичне застосування, її матеріал може бути використаний на факультативних заняттях з лінійної алгебри для формування наукового світогляду та математичної культури студентів.
1. Демидович Б. П., Марон И. А. Основы вычислительной математики. — 3-е изд. — М.: Наука, 1966. — 560 с.
2. Ильин В. А., Позняк Э. Г. Линейная алгебра: Учеб. Для вузов — 4-е изд. — М.: Наука. Физматлит, 1999. — 296 с.
3. Калиткин Н. Н. Численные методы. — М.: Мир, 1988. — 512 с.
4. Мальцев А. И. Основы линейной алгебры. — 3-е изд. — М.: Наука, 1968. — 402 с.
5. Марчук Г. И. Методы вычислительной математики — М.: Наука, 1977. — 392с., ил.
6. Приближение функций, дифференциальные и интегральные уравнения/Под ред. Б. П. Демидовича. — М.: Наука, 1987. — 368 с.
7. Фаддеев Д. К., Фаддеева В. Н. Вычислительные методы линейной алгебры. — М.: Физматгиз, 1963. — 408 с.
8. Фокс А., Пратт М. Вычислительная геометрия. Применение в проектировании и на производстве: Пер. с англ. — М.: Мир, 1982. — 304 с., ил.
9. Форсайт Дж., Молер К. Численное решение систем линейных уравнений. — М.: Мир, 1969. — 285 с.
10. Форсайт Дж., Малькольм М., Моулер К. Машинные методы математических вычислений: Пер. с англ. — М.: Мир, 1980. — 277 с., ил.
11. Хемминг Р. В. Цыфровые фильтры: Пер. с англ./Под ред. А. М. Трахтмана — М.: Советское радио, 1980. — 224 с., ил.
12. Шуп Т. Решение инженерных задач на ЭВМ: Практическое руководство. Пер. с англ. — М.: Мир, 1982. — 238с., ил.
[1]Нормуванням (на одиницю) вектора х називають множення його на