Міністерство освіти і науки України
Криворізький державний педагогічний університет
Кафедра математики
Курсова робота з математики
Власні значення і власні вектори матриці
Студента ІV курсу фізико-математичного факультету
Палія Валерія Миколайовича
Науковий керівник
ст. викладач Корольська Л. Р.
Кривий Ріг
2009 р.
Вступ
Розділ І. Основні відомості з лінійної алгебри
1.1Види матриць. Дії над матрицями. Визначник
1.2Власні значення та власні вектори матриці
Розділ ІІ. Знаходження власних векторів і власних значень матриць
2.1Метод А. М. Данілевського
2.2Метод А. Н. Крилова
2.3Метод Леверрьє
2.4Метод невизначених коефіцієнтів
2.5Метод скалярних добутків для знаходження першого власного значення дійсної матриці
2.6приклади задач, що зводяться до відшукання власних значень та власних векторів матриці
Висновки
Список використаних джерел
Історично першим розділом лінійної алгебри був розділ теорії лінійних рівнянь. Згодом у зв’язку з розв’язанням системи лінійних рівнянь було введено поняття "визначник" в 1750 році Крамером. У зв’язку з вивченням лінійних рівнянь та визначників вводиться поняття матриці в 1877 році Г. Фробеніусом. В кінці 19 століття з’явився новий розділ лінійної алгебри "Власні значення та власні вектори матриць". Цей розділ має прикладне значення.
Як з’ясувалося, деякі спеціалісти донині цікавляться такою проблемою лінійної алгебри, як обчислення власних значень та власних векторів матриць. Ця проблема виникає в багатьох областях математики, механіки, інженерної справи та геології.
Актуальність нашого дослідження полягає втому, що цілий ряд| інженерних задач зводиться до розгляду систем рівнянь, що мають єдиний розв’язок лише в тому випадку, коли| відоме значення деякого вхідного в них параметра. Цей особливий параметр називається характеристичним, або власним, значенням системи. Із задачами на власні значення інженер стикається в різних ситуаціях. Так, для тензорів напруги власні значення визначає головна нормальна напруга, а власними векторами задаються напрями, пов'язані з цими значеннями. При динамічному аналізі механічних систем власні значення відповідають власним частотам коливань, а власні вектори характеризують моди цих коливань. При розрахунку конструкцій власні значення дозволяють визначати критичні навантаження, перевищення яких приводить до втрати стійкості. Вибір найбільш ефективного методу обчислення власних значень або власних векторів для даної інженерної задачі залежить від ряду чинників, таких, як тип рівнянь, число шуканих власних значень і їх характер.
Об’єктом нашого дослідження є елементи лінійної алгебри.
Предмет дослідження: методи знаходження власних значень і власних векторів матриць.
Задачі дослідження:
1) Аналіз навчальної та методичної літератури з теми дослідження.
2) Обгрунтувати методи знаходження власних векторів і власних значень матриць.
3) Навести приклади знаходження власних векторів і власних значень матриць.
Розділ І. Основні відомості з лінійної алгебри
1.1 Види матриць. Дії над матрицями. Визначник
Матрицею називається прямокутна таблиця з чисел, яка складається з деякої кількості m рядків та деякої кількості n стовпців.
Числа m і n називаються порядками матриці. У випадку, якщо m = n, матриця називається квадратною, а число m = n — її порядком. [2, стор. 10]
Щоб записати матрицю, виписують належним чином позначення її елементів та отриману таблицю беруть в дужки або обмежують подвійними лініями.
Таким чином, загальний вигляд матриці розмірності (m, n) буде таким
де aij — позначення елементів з множини C. Часто замість такого докладного запису вживають скорочений: || aij || або || aij ||m,n.
Якщо кількість рядків матриці дорівнює кількості її стовпців, то матриця називається квадратною, а кількість її рядків, що дорівнює кількості стовпців, називається порядком квадратної матриці.
Матрицю, що має тільки один рядок, називають просто рядком матриці, а кількість його елементів — довжиною рядка. В подальшому матриці будуть позначатися великими літерами латинського алфавіту.
Дві матриці називаються рівними, якщо кількість рядків і стовпців у них відповідно рівні та якщо рівні числа, що стоять на відповідних місцях цих матриць. Таким чином, одна рівність між (m, n)-матрицями рівносильна системі mn рівностей між їх елементами.
Основними матричними операціями є множення числа на матрицю або матриці на число, додавання та перемноження двох матриць. За означенням, для того щоб помножити число α на матрицю А або матрицю А на число α, необхідно помножити α на всі елементи матриці А. Наприклад,
Матриця всі елементи якої дорівнюють нулю, називається нульовою матрицею і позначається О. Якщо бажають вказати явно кількість рядків і стовпців нульової матриці, то пишуть Оmn.
Блочні матриці. Припустимо, що деяка матриця
Наприклад, матрицю
можна розглядати як блочну матрицю
Цікавим є той факт, що основні операції з блочними матрицями здійснюються за тими ж правилами, по яким вони здійснюються зі звичайними числовими матрицями, тільки в ролі елементів виступають блоки. [2, стор. 15]
Для довільної матриці А та довільних α, β мають місце такі співввідношення:
1.
2.
3.
Сумою двох матриць А і В, що мають відповідно рівну кількість рядків і стовпців, називається матриця, що має ту ж кількість рядків і стовпців і елементи, які дорівнюють сумам відповідних елементів матриць А, В. Наприклад,
З цього визначення витікають співвідношення:
4.
5.
6.
7.
8.
Вводячи позначення
Добутком матриці
Для позначення добутку матриці А на матрицю В використовують запис
Зі сформульованого вище слідує, що матрицю А можна помножити не на будь-яку матрицю В: необхідно, щоб кількість стовпців матриці А дорівнювало кількості рядків матриці В.
Зокрема, два добутки