Мы видим, что наблюдаемое значение z = - 2,5 нe принадлежит интервалу [-2,33;¥), поэтому гипотезу нужно отвергнуть.
Приведем пример гипотезы с двухсторонней оценкой. Пусть фирма, выпускающая стабилитроны определенного типа, утверждает, что номинальное напряжение стабилизации стабилитронов равно 10 В. Естественно, что отклонение напряжения стабилизации в меньшую или большую стороны одинаково нежелательно. Выдвинем гипотезу, что генеральное среднее напряжение стабилизации равно 10 В, а затем проверим эту статистическую гипотезу по результатам наблюдения.
Пусть при испытании 100 стабилитронов среднее выборочное равно 10,3 В, а несмещенное выборочное среднее квадратичное отклонение равно 1,2 В. Можно ли с доверительной вероятностью 0,95 считать выдвинутую гипотезу справедливой? Так как объем выборки больше 30, то можно, как и в предыдущем примере, ввести гауссовскую случайную величину Z. Найдем
и приравняем правую часть полученного соотношения 0,95. Тогда
Если объем выборки n < 30, то случайная величина
3. Функция риска
доверительный интервал вероятность статистическая гипотеза
Пусть имеются две противоположные гипотезы Но и Н1 и некоторая связанная с ними случайная величина Y. И пусть у - значение случайной величины Y, полученное в результате испытаний, которое принадлежит множеству D - множество всех значений случайной величины Y. Требуется провести проверку гипотезы Но относительно конкурирующей гипотезы Н1 на основании результатов испытания.
Разобьем множество D на две части - Dо и D1 с условием принятия гипотезы Но при попадании полученного значения у в Dо и гипотезы Н1 - при попадании у в D1. Выбор решающего правила, то есть разбиение множества Dна две части Dо и D1 в любой задаче проверки гипотез возможен больше, чем одним способом. Возникает вопрос, какое из этих разбиений в каждой конкретной задаче считать наилучшим? Чтобы решить поставленную задачу нужно обладать некоторой дополнительной информацией. Такая информация носит название априорной.
Будем считать известными два условных распределения вероятностей случайной величины Y:
Кроме того нам потребуется априорная вероятность р того, что гипотеза Но имеет место.
Введем в рассмотрение события:
А – верна гипотеза Но, тогда р = р(А);
В – в результате эксперимента значение у попало в интервал Dо;
Тогда по результатам эксперимента возможны только четыре события:
АВ – верна гипотеза Но и принято решение о ее истинности;
А
Ясно, что события
Для ответа на вопрос, какое из решающих правил следует считать лучшим, введем понятие функции потерь и функцию риска.
Функция потерь – дискретная случайная величина С, которая каждому из событий АВ,
Пусть ро = р(АВ или
С | 0 | с1 | с2 |
р | ро | р1 | р2 |
Определение. Математическое ожидание М(С) случайной величины С называется функцией риска и обозначается буквой r.
Таким образом, r = М(С) = 0 ро + с1 р1 + с2 р2 = с1 р1 + с2 р2.
Введение функции риска приводит к естественному выбору решающего правила. Из двух правил лучшим считается то, которое приводит к меньшему риску. Для нахождения минимума функции риска найдем вероятности р1 и р2:
Тогда
Для того, чтобы интеграл был минимальным, а значит и минимальное значение принимала функция риска r, нужно в состав Dо включить только те у, в которых подыинтегральная функция
С1 (1-р) f1(y) – pC2fo(y) < 0,
а в состав D1- остальные значения у.
Последнее неравенство можно записать в виде
Функция f1(y)/fo(y) называется отношением правдоподобия.
Итак, оптимальное решающее правило заключается в следующем: полученное в результате эксперимента значение у подставляется в отношение правдоподобия f1(y)/fo(y) и сравнивается с числом
l =
если полученное в результате вычисления число f1(y)/fo(y) меньше l, принимается гипотеза Но; в противном случае – гипотеза Н1.
Величина l носит название порога, а оптимальное решающее правило носит название порогового критерия оптимальности.