Смекни!
smekni.com

Доверительный интервал. Проверка статистических гипотез (стр. 2 из 2)

Мы видим, что наблюдаемое значение z = - 2,5 нe принадлежит интервалу [-2,33;¥), поэтому гипотезу нужно отвергнуть.

Приведем пример гипотезы с двухсторонней оценкой. Пусть фирма, выпускающая стабилитроны определенного типа, утверждает, что номинальное напряжение стабилизации стабилитронов равно 10 В. Естественно, что отклонение напряжения стабилизации в меньшую или большую стороны одинаково нежелательно. Выдвинем гипотезу, что генеральное среднее напряжение стабилизации равно 10 В, а затем проверим эту статистическую гипотезу по результатам наблюдения.

Пусть при испытании 100 стабилитронов среднее выборочное равно 10,3 В, а несмещенное выборочное среднее квадратичное отклонение равно 1,2 В. Можно ли с доверительной вероятностью 0,95 считать выдвинутую гипотезу справедливой? Так как объем выборки больше 30, то можно, как и в предыдущем примере, ввести гауссовскую случайную величину Z. Найдем

и приравняем правую часть полученного соотношения 0,95. Тогда

и zo =1,96. Это значит, что наблюдаемое значение z должно принадлежать интервалу (-1,96; 1,96). Поскольку
не попадает в указанный интервал, то гипотеза отвергается.

Если объем выборки n < 30, то случайная величина

cчитается стьюденской случайной величиной T. Поэтому повторяя все указанные выше выкладки для проверки статистических гипотез, значения аргумента ищутся для распределения Стьюдента. При этом, так как "хвосты" стьюденского распределения по отношению к гауссовским удлиняются, доверительные интервалы расширяются, а возможности принятия гипотез улучшаются.

3. Функция риска

доверительный интервал вероятность статистическая гипотеза

Пусть имеются две противоположные гипотезы Но и Н1 и некоторая связанная с ними случайная величина Y. И пусть у - значение случайной величины Y, полученное в результате испытаний, которое принадлежит множеству D - множество всех значений случайной величины Y. Требуется провести проверку гипотезы Но относительно конкурирующей гипотезы Н1 на основании результатов испытания.

Разобьем множество D на две части - Dо и D1 с условием принятия гипотезы Но при попадании полученного значения у в Dо и гипотезы Н1 - при попадании у в D1. Выбор решающего правила, то есть разбиение множества Dна две части Dо и D1 в любой задаче проверки гипотез возможен больше, чем одним способом. Возникает вопрос, какое из этих разбиений в каждой конкретной задаче считать наилучшим? Чтобы решить поставленную задачу нужно обладать некоторой дополнительной информацией. Такая информация носит название априорной.

Будем считать известными два условных распределения вероятностей случайной величины Y:

- плотность распределения случайной величині Y при условии, что верна гипотеза Но;

- плотность распределения случайной величині Y при условии, что верна гипотеза Н1;

Кроме того нам потребуется априорная вероятность р того, что гипотеза Но имеет место.

Введем в рассмотрение события:

А – верна гипотеза Но, тогда р = р(А);

– верна конкурирующая гипотеза Н1, тогда р(
) = 1 - р;

В – в результате эксперимента значение у попало в интервал Dо;

– в результате эксперимента значение у попало в интервал D1.

Тогда по результатам эксперимента возможны только четыре события:

АВ – верна гипотеза Но и принято решение о ее истинности;

В – верна гипотеза Н1, а принято решение о истинности гипотезы Но;

А

– верна гипотеза Но, а принято решение о истинности гипотезы Н1;

– верна гипотеза Н1 и принято решение о ее истинности.

Ясно, что события

В и А
определяют ошибочные решения. Событию
В соответствует так называемая ошибка первого рода, а событию А
- ошибка второго рода.

Для ответа на вопрос, какое из решающих правил следует считать лучшим, введем понятие функции потерь и функцию риска.

Функция потерь – дискретная случайная величина С, которая каждому из событий АВ,

В, А
,
ставит в соответствие потери
, выраженные в каких-то единицах. Правильному решению естественно положить нулевые потери, а ошибкам первого и второго ряда положить соответственно положительные потери (числа) С1 и С2, которые нужно задать.

Пусть ро = р(АВ или

), р1 = р(
В), р2 = р(А
). Определение значений этих вероятностей будет проведено ниже. Ряд распределения для случайной величины С имеет вид
С 0 с1 с2
р ро р1 р2

Определение. Математическое ожидание М(С) случайной величины С называется функцией риска и обозначается буквой r.

Таким образом, r = М(С) = 0 ро + с1 р1 + с2 р2 = с1 р1 + с2 р2.

Введение функции риска приводит к естественному выбору решающего правила. Из двух правил лучшим считается то, которое приводит к меньшему риску. Для нахождения минимума функции риска найдем вероятности р1 и р2:

Тогда

Для того, чтобы интеграл был минимальным, а значит и минимальное значение принимала функция риска r, нужно в состав Dо включить только те у, в которых подыинтегральная функция

С1 (1-р) f1(y) – pC2fo(y) < 0,

а в состав D1- остальные значения у.

Последнее неравенство можно записать в виде

Функция f1(y)/fo(y) называется отношением правдоподобия.

Итак, оптимальное решающее правило заключается в следующем: полученное в результате эксперимента значение у подставляется в отношение правдоподобия f1(y)/fo(y) и сравнивается с числом

l =

если полученное в результате вычисления число f1(y)/fo(y) меньше l, принимается гипотеза Но; в противном случае – гипотеза Н1.

Величина l носит название порога, а оптимальное решающее правило носит название порогового критерия оптимальности.