Результаты расчетов представлены в таблице 1.3.
2.
а=0,5 – по условию.
; S1 = 0,5 х 510 + 0,5 х 506 = 508; ; S2 = 0,5 х 497 + 0,5 х 508 = 502,5 и т.д.Результаты расчетов представлены в таблице 1.3.
Таблица 1.3.
Экспоненциальные средние
t | Экспоненциальная средняя | t | Экспоненциальная средняя | ||
а=0,1 | а=0,5 | а=0,1 | а=0,5 | ||
1 | 506,4 | 508 | 16 | 505,7 | 513,3 |
2 | 505,5 | 502,5 | 17 | 506,1 | 511,7 |
3 | 505,3 | 503,2 | 18 | 506,1 | 508,8 |
4 | 505,8 | 506,6 | 19 | 507,0 | 511,9 |
5 | 506,1 | 507,8 | 20 | 508,5 | 517 |
6 | 505,8 | 505,4 | 21 | 509,9 | 520 |
7 | 505,2 | 502,7 | 22 | 511,6 | 523,5 |
8 | 504,7 | 501,4 | 23 | 512,8 | 523,2 |
9 | 504,2 | 500,7 | 24 | 514,3 | 525,6 |
10 | 503,4 | 497,8 | 25 | 515,8 | 527,3 |
11 | 502,4 | 495,9 | 26 | 518,0 | 532,7 |
12 | 502,0 | 497,5 | 27 | 520,1 | 525,8 |
13 | 502,0 | 499,7 | 28 | 522,2 | 538,4 |
14 | 502,7 | 504,4 | 29 | 524,3 | 540,7 |
15 | 505,0 | 514,7 | 30 | 525,9 | 540,9 |
Рисунок 1.2. Экспоненциальное сглаживание временного ряда курса акций: А – фактические данные; В – экспоненциальная средняя при альфа = 0,1; С – экспоненциальная средняя при альфа = 0,5
При а=0,1 экспоненциальная средняя носит более гладкий характер, т.к. в этом случае в наибольшей степени поглощаются случайные колебания временного ряда.
3. Прогноз по адаптивной полиномиальной модели второго порядка формируется на последнем шаге, путем подстановки в уравнение модели последних значений коэффициентов и значения
- времени упреждения.Прогноз на 1 день вперед (
= 1): (дол.)Прогноз на 2 дня вперед (
= 2): (дол.)1. Дуброва Т.А. Статистические методы прогнозирования в экономике: Учебное пособие / Московский государственный университет экономики, статистики и информатики. – М.: МЭСИ, 2003. – 52с.
2. Афанасьев В.Н., Юзбашев М.М. Анализ временных рядов и прогнозирование М.: Финансы и статистика, 2001.
3. Лукашин Ю.П. Регрессионные и адаптивные методы прогнозирования. Учебное пособие. – М.: МЭСИ, 1997.