Смекни!
smekni.com

Решение сфероидических треугольников (стр. 1 из 3)

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Государственное общеобразовательное учреждение высшего

профессионального образования

«СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ

АКАДЕМИЯ» (ГОУ ВПО «СГГА»)

Кафедра высшей геодезии

Лабораторная работа №2

Решение сфероидических треугольников.

Вариант №28

Выполнил: Проверил:

ст.гр. АГ-41 Телеганов Н.А.

Жулина И.С.

Новосибирск – 2010

Содержание работы

1. Кратко изложить основные положения теории замены сфероидического треугольника сферическим при заданных искажениях эле­ментов треугольника с приведением необходимых чертежей и окончательных формул.

2. Описать последовательность решения сферических треуголь­ников с применением теоремы Лежандра и по способу аддитаментов.

Решить треугольники своей сети по способу аддитаментов, а затем, используя вычисленные стороны, решить эти же треугольники как линей­ные с применением теоремы Лежандра.

Контрольные вопросы

  1. Что такое сфероидический треугольник?
  2. При каких размерах сторон сфероидические треугольники можно решить как сферические, если требуется определить элементы треугольника с точностью 1·10-6?
  3. В чем отличие решения сфероидических и сферических треугольников?
  4. Что такое аддитамент стороны, и как он вычисляется?
  5. Сформулировать теорему Лежандра и привести формулу перехода от угла сфероидического треугольника к плоскому при больших сторонах.
  6. Как вычисляется сферический избыток ε при сторонах меньших и больших 90 км?

Каковы возможные теоретические пределы изменения ε?

Решение сфероидических треугольников

Виды геодезических треугольников и условия замены сфероидических треугольников сферическими

Треугольники на любой поверхности, образованные геодези­ческими линиями называются геодезическими. Однако, такое общее название треугольников (по виду сторон, образующих их) не всегда является удобным. Так, например, на плоскости треуголь­ник, образованный прямыми линиями, есть геодезический, на сфе­ре, образованный дугами больших кругов, так же является геоде­зическим и т. д. Гораздо удобнее треугольники, стороны которых есть геодезические линии, называть по принадлежности их к по­верхности: на плоскости - плоские, на сфере - сферические, на эллипсоиде - сфероидические.

Для образования сфероидического треугольника на поверх­ности эллипсоида необходимо в каждое непосредственно измерен­ное горизонтальное направление ввести поправку за переход от азимута нормального сечения к азимуту геодезической линии. Вводить поправки в измеренные стороны не следу­ет, т.к. сторона после ее редуцирования на эллипсоид будет представлять собой нормальное сечение, длина которого с очень высокой точностью равна длине, соответствующей геодезической линии.

Решение сфероидических треугольников представляет собой сложную задачу. Сложность этой проблемы обусловлена переменной кривизной поверхности эллипсоида.

Так, если взять два сфероидических треугольника с одина­ковыми сторонами, но расположенных под разными широтами по­верхности эллипсоида, то соответствующие их углы, в общем слу­чае, равны не будут. Аналогично не будут равны и стороны треу­гольников, расположенных под разными широтами, у которых углы и одна (исходная) сторона соответственно равны.

Поэтому, сфероидические треугольники решать без учета из­менения кривизны нельзя. Однако, в теории математики отсутс­твует специальный математический аппарат, позволяющий решать треугольники в замкнутом виде на любой поверхности, подобно тому, как это сделано для плоскости и сферы.

Поверхность земного эллипсоида по своей форме близка к сфере (α=1:300), и поэтому, можно ожидать, что элементы сфероидического треугольника будут мало отличаться от соответс­твующих элементов сферического треугольника с надлежаще подоб­ранным радиусом шара. Причем, очевидно, эти различия будут прямо пропорциональны размерам треугольников: чем меньше длины сторон треугольников, тем меньше их искажения и наоборот.

Найдём наибольшие размеры сторон сфероидического треугольника, при которых замена его сферическим будет вызывать ошибки в элементах треугольника, не превышающие наперед заданной величины.

Решение этой задачи выполним с использованием отображения части поверхности эллипсоида на шар, радиус которого примем равным среднему радиусу кривизны эллипсоида

в некоторой точке О (рис. 1),

Рис. 1

выбранной в центре отображаемого участка поверхности эллипсои­да, ограниченного геодезической окружностью радиуса So.

Приняв точку О за полюс системы полярных координат So и А, отобразим часть поверхности эллипсоида на шар таким обра­зом, чтобы полярные координаты точки Q1' на шаре не изменя­лись.

Тогда, при таком способе изображения линейные искажения в точке Q1' в направлении Q1`o` (дуги большого круга) будут от­сутствовать, а в перпендикулярном направлении Q1` Q2` (дуги ма­лого круга) будут наибольшими.

Обозначая длины элементарных дуг Q1Q2 и Q1` Q2,. как этопоказано на рис 1, можно найти наибольшие относительные линейные искажения ΔS:S, как:

(1)

Здесь m - величины, представляющие собой в общем случае некоторые функции полярных координат. В геодезии эти величины называют приведенной длиной геодезической линии.

Рис. 2

На шаре (рис. 2) при­веденной длине дуги большо­го круга ( с полюсом в точ­ке О') будет соответство­вать радиус кривизны ге­одезической окружности (ма­лого круга ). Поэтому, для шара, непосредствен­но из чертежа (рис. 2), можно написать

(2)

Для поверхности эллипсоида приведенная длина геодезичес­кой линии mэ не имеет такой простой геометрической интерпрета­ции как для сферы, поэтому, полагая, что mэ есть функция длины геодезической линии So, можно написать:

Очевидно f(o) = m0 есть приведенная длина геодезической линии, вычисленная для точки 0 (рис. 1) и, тогда:

(3)

Для получения производных приведенной длины геодезической линии по длине So можно воспользоваться формулой (2), в ко­торой для поверхности эллипсоида следует радиус считать вели­чиной переменной.

Дифференцируя выражение (2) по So последовательно, на­ходим:

и т.д.

В этих формулах через "к" обозначена полная кривизна по­верхности эллипсоида.

(4)

Приведенная длина геодезической линии и ее производные в формуле (3) должны вычисляться по аргументам точки 0, для которой So = 0. Но при So = 0 , m0 как функция расстояния Sо, очевидно, также должно быть равно нулю, а производные примут следующие значения:

Подставляя производные в формулу приведенной длины (3), находим

(5)

По этой формуле, вообще говоря, можно вычислять приведен­ную длину геодезической линии для любой поверхности, а не только поверхности эллипсоида вращения. Для этого достаточно знать только полную кривизну поверхности и ее производные.

Так, например, для плоскости К0= 0 и, поэтому, приведен­ная длина для плоскости равна самой длине линии.

Для сферы Ко = 1 / Ro2, а производные полной кривизны бу­дут равны нулю, отсюда для сферы имеем:

(6)

Если в формуле приведенной длины дуги большого круга (2) си­нус заменить рядом, то, с точностью до членов пятого порядка малости, получим формулу (6).

Для получения формулы приведенной длины геодезической ли­нии поверхности эллипсоида вначале найдем производную полной кривизны:

Продифференцировав формулу полной кривизны (4) по широ­те, а затем умножив полученное равенство на выражение производной dB/dS, находим

Подставив производную К0', а также полную кривизну по­верхности эллипсоида (4) в выражение (5), получаем оконча­тельно формулу вычисления приведенной длины геодезической ли­нии на поверхности эллипсоида