Смекни!
smekni.com

Метод последовательных уступок Теория принятия решений (стр. 2 из 3)

В связи с тем, что не всегда стратегия, получен­ная с помощью метода последовательных уступок, является эффективной, возникает и такой вопрос: обязательно ли среди множества стратегий, выде­ляемых этим методом, существует хотя бы одна эффективная?

В общем случае на этот вопрос положительный ответ дать нельзя, однако имеет место такое утверждение: если UÌRn— множество замкнутое и ограниченное, а все Кr непрерывны, то решением S) задачи (1) служит по крайней мере одна эффективная стратегия.

Действительно, при выполнении условий этого утверждения множество Us стратегий-решений S) оказывается непустым, замкнутым и огра­ниченным. Следовательно, существует точка u*ÎUS, в которой функция

достигает наибольшего на Us значения. Нетрудно убедиться в том, что u* эффективна.

Таким образом, при решении почти всякой при­кладной многокритериальной задачи метод последо­вательных уступок выделяет в качестве оптималь­ных и эффективные стратегии. Однако необходимо отметить, что выделенные эффективные стратегии не обязаны быть эквивалентными (см. пример 1); но нетрудно проверить, что это возможно лишь при S³3.

Если нельзя гарантировать, что при решении рассматриваемой многокритериальной задачи метод последовательных уступок приводит к получению лишь эффективных стратегий (в частности, если по выполняется вышеприведенное условие единст­венности), то для выделения эффективной страте­гии среди решений задачи S) достаточно, как пока­зывает только что проведенное доказательство,

найти

(2)

Однако практически более удобно применять такой прием : заменить в S) критерий Ks на

,

где À — положительное число;

в результате получится задача:

(3)

Нетрудно доказать, что любая стратегия, являющаяся решением задачи (3), эффективна; более того, всякая максимизирующая последовательность, служащая решением этой задачи, также эффективна.

Смысл указанного приема заключается в том, что при достаточно малом числе À>0 для любой полученной в результате решения задачи (3) стратегии w значение критерия KS(w) будет весьма близким к Qs*) и эта стратегия эффективна, в то время как при решении S) задачи (1) может быть получена стратегия и, которую выгодно заме­нить некоторой эффективной стратегией v>u, су­щественно лучшей, чем и, но одному или даже не­скольким частным критериям. А поскольку величи­ны уступок А, на практике устанавливаются при­ближенно, то замена Ks на K*s при малых À>0 в силу указанной причины оказывается допустимой и оправданной.

Таким образом, понятие эффективной стратегии позволило уточнить вычислительную процедуру отыскания оптимальных стратегий методом после­довательных уступок.

С другой стороны, метод последовательных уступок позволяет указать характеристическое свойство эффективных стратегий.

Теорема 1.

Для любой эффективной стратегии u* существуют такие числа D*r, что эту стратегию можно выделить методом последовательных уступок, т. е.
при Dr=D*r, r=1, 2,...,S—1, стратегия u* являет­ся единственным (с точностью до эквивалентности) решением S) задачи (1).

Теорема 1 характеризует эффективные стра­тегии с помощью последовательности задач (1). В частности, она показывает, что метод последова­тельных уступок можно использовать для построе­ния множества эффективных стратегий.

Более того, теорема 1 позволяет исследовать и сам метод последовательных уступок. Действи­тельно, она показывает, что при любом фиксирован­ном расположении частных критериев, по степени относительной важности одним лишь выбором ве­личин уступок можно обеспечить выделение любой эффективной стратегии в качестве оптимальной (так что проблема отыскания оптимальной страте­гии, т. е. проблема выбора эффективной стратегии из всего множества U°, формально эквивалентна проблеме назначения надлежащих величин уступок при произвольном фиксированном упорядочении критериев).

Следовательно, для решения многокритериаль­ной задачи нужно так ранжировать критерии, чтобы потом удобнее было выбирать величины уступок. Учитывая вышеизложенное и внимательно рассмо­трев порядок назначения величин уступок, можно сделать следующий вывод: метод последовательных уступок целесообразно применять для решения тех многокритериальных задач, в которых все частные критерии естествен­ным образом упорядочены по степени важности, причем каждый критерий настолько существенно более важен, чем последующий, что можно ограни­читься учетом только попарной связи критериев и выбирать величину допустимого снижения очеред­ного критерия с учетом поведения лишь одного сле­дующего критерия.

Особенно удобным является случай, когда уже в результате предварительного анализа многокритериальной задачи выясняется, что можно допустить уступки лишь в пределах «инженерной» точности (6—10% от наибольшей величины критерия).

Решение многокритериальной задачи методом последовательных уступок — процедура довольно трудоемкая, даже если заранее выбраны величины всех уступок. Поэтому большой интерес представляет вопрос: можно ли при заданных Diполучить оптимальную стратегию за один этап, сведя после­довательность задач (1) к одной экстремальной задаче?

Мы можем указать лишь приближенный способ одноэтапного решения для S=2. Он основан на следующем утверждении:

Лемма 1.

Пусть множество UÌRp замкнуто и ограничено, K1и К2 непрерывны на U, D1³0 и À£D1/M12, где

(4)

Тогда для любой стратегии u*, доставляющей функции L=K1+ÀК2 наибольшее на U значение, справедливо неравенство Q1-K1(u*)£D1 причем если K1(u*)£ Q1, то

Эта лемма, показывает, что если решить задачу максимизации на U функции L=K1+ÀК2, в кото­рой число À назначено указанным образом, то для полученной стратегии u* (она обязательно эффек­тивна) значение K1(u*) будет отличаться от максимального Q1 не более, чем на D1, a K2(u*) будет тем ближе к Q2, чем точнее назначена оценка М12.

Однако даже если взять число М12, удовлетворяю­щее (4) как равенству, и положить À = D1/M12, то все равно нельзя гарантировать, что K2(u*)=Q2,так что рассматриваемый способ действительно является приближенным.

Пример 4. Пусть U — четверть единичного круга, ле­жащая в положительном квадранте: U={u: uÎR2, u21+u22£1, u1³0, u2³0} K1(u)=u1, K2(u)=u2. Здесь Q1 = l и М12=1, если исходить из (4) как равенства. Примем D1=0,2; À=0,2.

Функция u1+ 0,2u2 достигает максимума на Uв единственной точке

так что
, однако

Пример 5. U={u: uÎR2 , 0£u2£1, (1+d)u2£1-u1} где d — положительное число, K1(u)=u1, K2(u)=u2 . Исполь­зуя (4) как равенство, находим: М12 = 1. Положим D1=1; À=1. Функция u1+u2достигает на Uмаксимума в един­ственной точке (1, 0). Возьмем теперь ; À=1 + e. где e— любое сколь угодно малое положительное число. Тогда при d<e функция u1+(1+e)u2 будет достигать максимума на U вточ­ке (-d, 1), так

что Q1-K1(-d,1) = 1+d >D1=1.

Примечание. Для решения многокритериальных задач иногда применяют метод выделения основного частного кри­терия. Этот метод состоит в том, что исходная многокритери­альная задача сводится к задаче оптимизации по одному частному критерию КL,который объявляется основным, или главным, при условии, что значения остальных частных кри­териев Кr должны быть не меньше некоторых установленных величин («требуемых» значений) br,т. е. к задаче

найти

(5)

причем оптимальной считается обычно всякая стратегия, яв­ляющаяся решением задачи (5).

Выделение критерия Kt в качестве основного и назна­чение пороговых величин br, для остальных частных критериев фактически означает, что все стратегии разбиваются на два класса. К одному относятся стратегии, которые удовлетворяют всем S—1 ограничениям Kr(u)³br;такие стратегии можно назвать допустимыми. К другому классу относятся такие стратегии, которые не удовлетворяют хотя бы одному из указаных S—1 неравенств. Наконец, среди допустимых стратегий предпочтительнее считается та, для которой значение Критерия Kl больше.

Необходимо отметить, что установившееся название — «ос­новной», или «главный» критерий — по существу весьма условно. Действительно, критерий Kl максимизируется на множестве лишь допустимых стратегий; иначе говоря, если для стратегии u значение некоторого «второстепенного» частного критерия Kr оказывается хоть немного меньше, чем br, то она уже не может «претендовать» на роль оптимальной, сколь бы большим ни было для нее значение основного критерия. Сравнение (5) и (1) показывает, что метод после­довательных уступок формально можно рассматривать как особую разновидность метода выделения основного частного критерия, отличающуюся наличием специфической процедуры назначения величин ограничений для задачи максимизации KS (это обстоятельство фактически уже использовалось при доказательстве теоремы 1).