Оператор
Аналогично можно дать определение регуляризирующего алгоритма для задачи вычисления значений оператора (см. конец предыдущего параграфа), т.е. для задачи вычисления значений отображения G : D(G) → Y, D(G) ⊆X при условии, что аргумент задан с погрешностью (X, Y – метрические или нормированные пространства). Разумеется, задача решения операторного уравнения при условии, что A – инъективный оператор, может рассматриваться как задача вычисления значений оператора
Огромное значение имеет ответ на следующий очень важный вопрос, можно ли решить некорректную задачу, т.е. построить регуляризирующий алгоритм, не зная погрешность δ Если задача корректна, то устойчивый метод, очевидно, можно построить и без знания δ.
Так, в случае решения операторного уравнения
Теорема. Если для вычислений значений оператора G на множестве D(G) ⊆X существует регуляризирующий оператор, не зависящий от δ (явно), то существует продолжение G на X , которое непрерывно на D(G) ⊆X.
Итак, построение регуляризирующих алгоритмов, не зависящих явно от погрешности,
возможно только для задач, корректных на своей области определения.
Следующим свойством некорректно поставленных задач является невозможность оценить погрешность решения, даже если известна погрешность задания правой части операторного уравнения или погрешность задания аргумента в задаче вычисления значений оператора. Этот принципиально важный результат был также впервые доказан А.Б.Бакушинским для решения операторного уравнения.
Теорема. Пусть
Из определения регуляризирующего алгоритма легко следует, что, если есть хотя бы один регуляризирующий алгоритм, то их может быть сколько угодно. Выбрать же тот, который дает наименьшую ошибку, или сравнивать алгоритмы, сравнивая ошибки полученных приближенных решений, при решении некорректных задач, невозможно при отсутствии априорной информации, которая фактически преобразует такие задачи в корректные.
Регуляризирующие алгоритмы для операторных уравнений в бесконечномерных банаховых пространствах нельзя сравнивать и по скорости сходимости приближенного решения к точному при стремлении погрешности входных данных к нулю. Этот важный результат принадлежит В.А.Винокурову. (Ист. №1)
1. Пусть Z,U – гильбертовы пространства, а A – линейный ограниченный оператор, действующий из Z в U. Рассмотрим операторное уравнение
Без ущерба для общности будем считать, что ||A||<1. Предположим, что для
2. Эта задача может быть решена многими методами (регуляризирующими алгоритмами). Например, для ее решения можно использовать метод невязки (в обобщенной форме для решения несовместных уравнений). В этом методе приближение
Здесь
С другой стороны, можно, не зная величины р, но используя оценку
3. Сформулируем основные положения. Пусть известно, что нормальное псевдорешение
где р>0 – максимально возможное число. В общем случае число р полагается неизвестным, но при этом считается, что дана величина r.
Ниже будет использована величина
В качестве
4. Методику построения алгоритмов рассмотрим на примере специализированного метода невязки. Предлагаемый РА основан на решении экстремальной задачи: при заданном параметре
(C=const > 1). Алгоритм состоит из двух шагов:
1) Найти число
2) Вычислить при